Журналы →  Non-ferrous Мetals →  2024 →  №1 →  Назад

MATERIALS SCIENCE
Название Effect of iron and silicon on structure and properties of Al – Ca – Cu – Mn system casting alloys
DOI 10.17580/nfm.2024.01.09
Автор Letyagin N. V., Sheina E. S., Zhirnova A. S., Demina A. P.
Информация об авторе

Moscow Polytechnic University, Moscow, Russia1 ; National University of Science and Technology MISIS, Moscow, Russia2

N. V. Letyagin, Candidate of Technical Sciences, Associate Professor of the Scientific Activity Sector1, Leading Engineer of the Scientific Project2, e-mail: n.v.letyagin@gmail.com

 

Moscow Polytechnic University, Moscow, Russia
E. S. Sheina, Bachelor, Department of “Applied Informatics”
A. S. Zhirnova, Specialist, Department of “Technologies and Equipment of Mechanical Engineering”
A. P. Demina, Specialist, Department of “Technologies and Equipment of Mechanical Engineering”

Реферат

In this work, the effect of Fe and Si impurities on the structure and properties of alloys of the Al4Ca0.5CuMn system was studied. To determine the optimal concentration ranges of alloying and impurity elements, the phase composition was simulated in the Thermo-Calc software. The simulation results showed that the concentration of Mn is 0.8 wt.% can be considered as optimal in terms of forming a favorable structure and phase composition of the alloy with an increased content of Fe and Si up to 0.4 wt.% of each element. Smelting of model alloys of the Al4Ca0.5CuMnFeSi system with a Mn content of 0.7–0.8% and varying Fe content in the range up to 0.6 wt.% and Si up to 0.2 wt.%. with subsequent analysis of the cast structure by optical and scanning electron microscopy, it was possible to confirm the simulation results. The structure of the optimal composition of Al4Ca0.5Cu0.8Mn0.4Fe0.2Si alloy, adapted for smelting with the involvement of secondary raw materials, has a fine morphology with a size of eutectic intermetallic of ~ 4 microns. An increase in the proportion of Fe in the alloy of more than 0.4 wt.% leads to the appearance of coarse primary crystals of the Al6(Fe, Mn) phase. The alloy under study demonstrates a balanced set of casting and mechanical properties at the level of traditional silumins of type A356.0. The tensile strength is 180 MPa, the yield strength is 125 MPa, the elongation is 5.2%. The general appearance of the fracture structure is fibrous, which corresponds to the characteristics of favorable ductile fracture.

This work was financially supported by the Moscow Polytechnic University within the framework of the grant named after Pyotr Kapitsa.

Ключевые слова Al – Ca alloys, casting alloys, structure, phase composition, mechanical properties
Библиографический список

1. Dash S. S., Li D. J., Zeng X. Q., Chen D. L. Heterogeneous Microstructure and Deformation Behavior of an Automotive Grade Aluminum Alloy. Journal of Alloys and Compounds. 2021. Vol. 870. 159413.
2. Sathishkumar K., Soundararajan R., Sivakumar N. S., Shanthosh G., Pradeep C. Investigation of A413 Alloy with Reinforcement of SiC and Flyash Hybrid Composites by Stir Cast Cum Forged Process on Electric Vehicle In-Wheel Motor Casing. Materials Today: Proceedings. 2021. Vol. 45, Pt. 2. pp. 990–996.

3. Wang B., Zhang Z., Xu G., Zeng X., Hu W., Matsubae K. Wrought and Cast Aluminum Flows in China in the Context of Electric Vehicle Diffusion and Automotive Lightweighting. Resources, Conservation & Recycling. 2023. Vol. 191. 106877.
4. Raabe D., Ponge D., Uggowitzer P.J., Roscher M., Paolantonio M., Liu C., Antrekowitsch H., Kozeschnik E., Seidmann D., Gault B., de Geuser F., Deschamps A., Hutchinson C., Liu C., Li Z., Prangnell P., Robson J., Shanthraj P., Vakili S., Sinclair C., Pogatscher S. Making Sustainable Aluminum by Recycling Scrap: The Science of “Dirty” Alloys. Progress in Materials Science. 2022. Vol. 128. 100947.
5. Bertram M., Ramkumar S., Rechberger H., Rombach G., Bayliss C., Martchek K.J., Müller D., Liu G. A Regionally-Linked, Dynamic Material Flow Modelling Tool for Rolled, Extruded and Cast Aluminium Products. Resources, Conservation and Recycling. 2017. Vol. 125. pp. 48–69.
6. Djurdjevic M., Manasijevic S., Mihailovic M., Stopic S. From Bauxite as a Critical Material to the Required Properties of Cast Aluminum Alloys for Use in Electro Automotive Parts. Metals. 2023. Vol. 13, Iss. 11. 1796.
7. Li Y., Hu A., Fu Y., Liu S., Shen W., Hu H., Nie X. Al Alloys and Casting Processes for Induction Motor Applications in Battery-Powered Electric Vehicles: A Review. Metals. 2022. Vol. 12, Iss. 2. 216.
8. Wu Z., Luo S., Wang D., Wang X., Chen X., Nagaumi H., Hu Z. Effect of Thermophysical Properties on Porosity and Microstructure of Laser Welded Cast and Wrought Aluminum Alloy Dissimilar Lap Joints. Journal of Materials Research and Technology. 2023. Vol. 26. pp. 1833–1849.
9. Zhan H., Zeng G., Wang Q., Wang C., Wang P., Wang Z., Xu Y., Hess D., Crepeau P., Wang J. Unified Casting (UniCast) Aluminum Alloy — a Sustainable and Low-Carbon Materials Solution for Vehicle Lightweighting. Journal of Materials Science & Technology. 2023. Vol. 154. pp. 251–268.
10. Akopyan T. K., Letyagin N. V., Avxentieva N. N. High-Tech Alloys Based on Al – Ca – La(–Mn) Eutectic System for Casting, Metal Forming and Selective Laser Melting. Non-ferrous Metals. 2020. No. 1. pp. 52–59.
11. Preußner J., Rödler G., Fischer F. G., Hintz K., Friedmann V., Weisheit A. Additive Manufacturing of a Lightweight Al – Ca Alloy by Direct Energy Deposition and Laser Powder Bed Fusion. Practical Metallography. 2023. Vol. 60. pp. 704–715.
12. Letyagin N. V., Musin A. F., Sichev L. S. New Aluminum-Calcium Casting Alloys Based on Secondary Raw Materials. Materials Today: Proceedings. 2021. Vol. 38, Pt. 4. pp. 1551–1555.
13. Akopyan T. K., Letyagin N. V., Belov N. A., Koshmin A. N., Gizatulin D. Sh. Analysis of the Microstructure and Mechanical Properties of a New Wrought Alloy Based on the ((Al) + Al4(Ca,La)) Eutectic. Physics Metals Metallography. 2020. Vol. 121. pp. 914–919.
14. Letyagin N. V., Shurkin P. K., Nguen Z., Koshmin A. N. Effect of Thermodeformation Treatment on the Structure and Mechanical Properties of the Al3Ca1Cu1.5Mn Alloy. Physics Metals Metallography. 2021. Vol. 122. pp. 814–819.
15. Letyagin N. V., Akopyan T. K., Sokorev A. A., Svirido va T. A., Cherkasov S. O., Mansurov Y. N. The Characterization of Coatings Formed on As-Cast Al, Al – Si, and Al – Ca Aluminum Substrates by Plasma Electrolytic Oxidation. Metals. 2023. Vol. 13, Iss. 9. 1509.
16. Fokin D., Matveev S., Vakhromov R., Alabin A. Effect of Alloying Elements on Strength Properties and Casting Properties of Corrosion Resistant Quench-Free Al – Ca Alloys. In: Light Metals (Ed. by D. Eskin). Springer: Cham, Switzerland, 2022. pp. 113–118.
17. Volkova O. V., Dub A. V., Rakoch A. G., Gladko va A. A., Samoshina M. E. Comparison of pitting corrosion tendency for castings made of Al6Ca, Al1Fe, Al6Ca1Fe experimental alloys and AK12M2 industrial alloy. Izvestiya Vuzov. Tsvetnaya Metallurgiya. 2017. Vol. 5. pp. 75–81.
18. Belov N. A., Naumova E. A., Ilyukhin V. D., Doroshenko V. V. Structure and Mechanical Properties of Al – 6%Ca – 1%Fe Alloy Foundry Goods, Obtained by Die Casting. Tsvetnye Metally. 2017. No. 3. pp. 69–75.
19. Belov N. A., Akopyan T. K., Korotkova N. O., Naumova E. A., Pesin A. M., Letyagin N. V. Structure and Properties of Al – Ca (Fe, Si, Zr, Sc) Wire Alloy Manufactured from As-Cast Billet. JOM. 2020. Vol. 72. pp. 3760–3768.
20. Belov N. A., Naumova E. A., Akopyan T. K., Doroshenko V. V. Phase Diagram of the Al – Ca – Fe – Si System and Its Application for the Design of Aluminum Matrix Composites. JOM. 2018. Vol. 70. pp. 2710–2715.
21. Shen T., Zhang S., Liu Z., Yu S., Jiang J., Tao X., Akopyan T., Belov N., Yao Z. Convert Harm into Benefit: The Role of the Al10CaFe2 Phase in Al-Ca Wrought Aluminum Alloys Having High Compatibility with Fe. Materials. 2023. Vol. 16, Iss. 13. 7488.
22. Wang D., Nagaumi H., Wu Z., Zhang X., Wang R., Lin Y., Chong X., Li X., Zhang B. Tailoring the Mechanical Properties of Al4Ca Intermetallic by Doping M (M = Cu, Zn, Mg, Fe and Mn) from DFT Calculation. Journal of Materials Science. 2023. Vol. 58. pp. 7347–7361.
23. Akopyan T. K., Belov N. A., Letyagin N. V., Cherkasov S. O., Nguen X. D. Description of the New Eutectic Al – Ca – Cu System in the Aluminum Corner. Metals. 2023. Vol. 13, Iss. 4. 802.
24. Naumova E., Doroshenko V., Barykin M., Sviridova T., Lyasnikova A., Shurkin P. Hypereutectic Al – Ca – Mn – (Ni) Alloys as Natural Eutectic Composites. Metals. 2021. Vol. 11, Iss. 6. 890.
25. Belov N. A., Naumova E. A., Doroshenko V. V., Korotkova N. O., Avxentieva N. N. Determination of the Parameters of a Peritectic Reaction that Occurred in the Al-Rich Region of the Al – Ca – Mn System. Physics of Metals and Metallography. 2022. Vol. 123, pp. 759–767.
26. Akopyan T. K., Letyagin N. V., Sviridova T. A., Korotkova N. O., Prosviryakov A. S. New Casting Alloys Based on the Al + Al4(Ca,La) Eutectic. JOM. 2020. Vol. 72. pp. 3779–3786.
27. Kaufman J. G., Rooy E. L. Aluminum Alloy Castings: Properties, Processes and Applications. Materials Park: ASM International. 2004. 340 p.

Полный текст статьи Effect of iron and silicon on structure and properties of Al – Ca – Cu – Mn system casting alloys
Назад