Название |
p – T – x-diagram of the Au – Zn system |
Информация об авторе |
Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Chernogolovka, Russia
M. I. Alymov, Director, Professor, Doctor of Technical Sciences, Corresponding Member of the Russian Academy of Sciences Yu. V. Levinskiy, Lead Researcher, Professor, Doctor of Technical Sciences, e-mail: levinsky35@mail.ru
D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia E. V. Vershinina, Associate Professor, Candidate of Technical Sciences |
Реферат |
Studying and analyzing the Au – Zn system is currently relevant for manufacturing soft solder alloys, prosthetic dentistry, and jewelry. Adding a small amount of zinc reduces melting temperature, decreases hardness, increases workability, and changes the color of gold alloys from red shades to yellow shades; and zinc is also used for manufacturing white gold. As a rule, zinc content in such alloy reaches 8 % (wt.). Generally, manufacturing finished products from the stated alloy includes stages of melting and casting in vacuum or inert atmosphere. In view of a considerable difference in volatilisation and melting temperatures of gold and zinc (TAumelt = 1064 оC, TZnmelt = 420 оC), when conducting technological processes, including the system under study, it is mandatory to factor into both the composition (с), and temperature (Т), and external pressure (p). Thus, in addition to the diagram in axes с – Т, we need the p – Т diagram. It should be noted that the Au – Zn diagram shows complex nature in axes с – Т: crystallization occurs with forming solid solutions, intermediate and ordered (when decreasing temperature) phases at peritectic and eutectic transformations. When plotting the p – Т diagram for the Au – Zn alloy, the authors of the article used experimental data of thermodynamic properties and equilibrium of condensed phases in the system under study, as well as principles of plotting similar diagram stated in a monograph of one of the authors. The state diagram of the Au – Zn system in axes p – Т resulted from research was used as a basis for determining coordinates of points of four-phase equilibriums, plotting isobaric and isothermal sections within a temperature range of 300–800 оC and a pressure range of 10–5–105 Pa. In spite of complexity of such state diagrams, they are of practical interest, when conducting technological processes and using products from the Au – Zn system. |
Библиографический список |
1. Djordjeviс M. G., Miriс M. B., Djordjeviс D. M., Radivojeviс A. R. Influence of thermomechanical processing regime on the properties of yellow gold alloy Au585Cu240Ag100Zn75. Metallurgical & Materials Engineering. 2016. Vol. 22, No. 1. pp. 9–16. 2. Normandeau G., Roeterink R. White golds: a question of compromises. Gold Bulletin. 1994. Vol. 27, No. 3. pp. 70–86. 3. Liu H. S., Ishida K., Jin Z. P., Du Y. Thermodynamic assessment of the Au – Zn binary system. Intermetallics. 2003. Vol. 11. pp. 987–994. DOI: 10.1016/S0966-9795(03)00115-8 4. Bai Y., Tong O., Rong M., Tan C. Thermodynamic modeling of the Au – Ge – X (X = In, Sb, Si, Zn) ternary system. Materials. 2024. Vol. 17, No. 9. 2137. DOI: 10.3390/ma17092137 5. Rudolf R., Majeriс P., Lazic V., Grgur B. Development of a new AuCuZnGe alloy and determination of its corrosion properties. Metals. 2022. Vol. 12, No. 8. pp. 1284–1296. DOI: 10.3390/met12081284 6. Cheng Y., Lu S., Xu W., Wenb H., Wang J. Fabrication of superhydrophobic Au – Zn alloy surface on a zinc substrate for roll-down, self-cleaning and anti-corrosion properties. Journal of Materials Chemistry A. 2015. Vol. 3, No. 32. pp. 16774–16784. DOI: 10.1039/C5TA03979G 7. Docherty S. R., Safonova O. V., Copéret C. Surface redox dynamics in gold–zinc CO2 hydrogenation catalysts. Journal of the American Chemical Society. 2023. Vol. 145, No. 25. pp. 13526–13530. DOI: 10.1021/jacs.3c03522 8. Schüttler K. M., Bansmann J., Engstfeld A. K., Behm R. J. Interaction of bimetallic Zn/Au(111) surface with O2, NO2 and formation of ZnOx/Au(111). Surface Science. 2021. Vol. 711. 1218763. DOI: 10.1016/j.susc.2021.121863 9. Schüttler K. M., Bansmann J., Engstfeld A. K., Behm R. J. Adlayer growth vs spontaneous (near-) surface alloy formation: Zn growth of Au(111). The Journal of Chemical Physics. 2020. Vol. 152, No. 12. 124701. DOI: 10.1063/1.5145294 10. Marchenkov V. I. Jewelry. Moscow : Vysshaya shkola, 1992. 256 p. 11. Okamoto H., Massalski T. B. The Au – Zn (gold–zinc) system. Bulletin of Alloy Phase Diagrams. 1989. Vol. 10, No. 1. pp. 59–69. DOI: 10.1007/BF02882177 12. Thimmaiah S., Miller G. Rhombohedrally distorted γ–Au5–xZn8+y phases in the Au – Zn system. Inorganic Chemistry. 2013. Vol. 52. pp. 1328–1337. DOI: 10.1021/ic301933a 13. Yazawa A., Gublova A. Thermodynamic studies of liquid Au – Zn and Ag – Zn system. Transactions of the Japan Institute of Metals. 1970. Vol. 11, No. 6. pp. 419–423. DOI: 10.2320/matertrans1960.11.419 14. Gerling U., Predel B. The studies of the thermodynamic properties of the molten Au – Zn alloys. Z. Metallkd. 1980. Vol. 71, No. 2. pp. 79–84. 15. Kameda K., Voshida V., Sakari S. Activities molten gold-zinc and silverzinc alloys by EMF measurement using zirconia solid electrolytes. Nippon Kinzoku Gakkaishi. 1980. Vol. 44, No. 6. pp. 671–677. 16. Sacchetto G. A., Bombi G. G., Florani M. Partial molar thermodynamic quantities of zinc in liquid zinc-gold alloys from measurement. Ber. Bunsenges. Phys. Chem. 1968. Vol. 7, No. 81. pp. 80–84. 17. Pemsler Y., Rapperport E. J. Thermodynamic properties of solid Au – Zn alloy by atomic absorption spectroscopy. Metallurgical Transactions. 1971. Vol. 2. pp. 79–84. 18. Masson D. B. Thermodynamic properties of zinc in alpha Au – Zn. Metall Trans. 1971. Vol. 2, No. 9. pp. 919–921. 19. Alderice R., Connell R. A., Downie D. B. Thermodynamic properties of the Au – Zn system. Acta Metall. 1973. Vol. 21, No. 4. pp. 485–488. 20. Anantatmula R. D. Thermodynamic properties of ε-phase Au – Zn alloys. Materials Science and Engineering. 1975. Vol. 19. pp. 123–127. 21. Levinskiy Yu. V., Lebedev M. P. p–Т–х-phase diagrams of binary metallic systems: methods of calculating and developing. Moscow : Nauchnyy mir, 2014. 200 p. |