Journals →  Tsvetnye Metally →  2024 →  #5 →  Back

ArticleName Influence of sodium on the structure and properties of aluminum matrix composite materials based on pseudobinary eutectic
DOI 10.17580/tsm.2024.05.05
ArticleAuthor Deev V. B., Prusov E. S., Ri E. Kh., Shabaldin I. V.

Wuhan Textile University, Wuhan, China ; Vladimir State University named after Alexander and Nikolay Stoletovs,
Vladimir, Russia ; National University of Science and Technology MISiS, Moscow, Russia

V. B. Deev, Professor of School of Mechanical Engineering and Automation1, Chief Researcher2, Professor of the Metal Forming Department3, Doctor of Technical Sciences, Professor, e-mail:


Vladimir State University named after Alexander and Nikolay Stoletovs, Vladimir, Russia
E. S. Prusov, Associate Professor of the Department of Technology of Functional and Structural Materials, Doctor of Technical Sciences, Associate Professor, e-mail:

I. V. Shabaldin, Laboratory Assistant, Researcher of the Department of Technology of Functional and Structural Materials, e-mail:


Pacific National University, Khabarovsk, Russia
E. Kh. Ri, Head of Higher School of Industrial Engineering of Polytechnic Institute, Doctor of Technical Sciences, Professor, e-mail:


The effect of adding sodium from 0.05 to 0.3 wt.% on the change in the size and a morphological modification of primary particles of the Mg2Si reinforcing phase in the production of cast aluminum matrix composite materials based on the Al – Mg2Si pseudobinary system was experimentally studied. It has been shown that the modification of composite melts with 0.25 wt.% of Na leads to a significant decrease in the average size of Mg2Si crystals and a change in morphology from acute-angled to close to round, while simultaneously increasing their total number and improving the uniformity of a distribution over the cross section of the ingot. Based on the comparative tribological tests under conditions of dry sliding friction, it has been found that the modification with 0.25 wt.% of sodium leads to a decrease in the friction coefficient on average from 0.45840 to 0.32308 for Al + 15 wt.% Mg2Si and from 0.46153 to 0.33582 for Al + 25 wt.% Mg2Si, while mass wear of the samples decreased from 0.0357 to 0.0077 g (15 wt.% Mg2Si) and from 0.3731 to 0.0163 g (25 wt.% Mg2Si). The samples of composites with the addition of a modifier in all cases were characterized by less scattering in the values of the friction coefficient. The results obtained expand the prospects for the practical use of aluminum matrix composite materials with endogenous reinforcing phases of a crystallization origin.

This research was funded by the Russian Science Foundation (Project № 20-19-00687-П,

keywords Aluminum matrix composite materials, Al-Mg2Si pseudobinary system, hypereutectic range of compositions, modification, sodium, quantitative parameters of the structure.

1. Raabe D., Mianroodi J. R., Neugebauer J. Accelerating the design of compositionally complex materials via physics-informed artificial intelligence. Nature Computational Science. 2023. Vol. 3. pp. 198–209.
2. Chak V., Chattopadhyay H., Dora T. L. A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites. Journal of Manufacturing Processes. 2020. Vol. 56. pp. 1059–1074.
3. Kumar D., Angra S., Singh S. Mechanical properties and wear behaviour of stir cast aluminum metal matrix composite: a review. International Journal of Engineering, Transactions A: Basics. 2022. Vol. 35, Iss. 4. pp. 794–801.
4. Bhaskar S., Kumar M., Patnaik A. Mechanical and tribological overview of ceramic particulates reinforced aluminium alloy composites. Reviews on Advanced Materials Science. 2019. Vol. 58, Iss. 1. pp. 280–294.
5. Ibrahim M. F., Ammar H. R., Samuel A. M., Soliman M. S., Samuel F. H. Metallurgical parameters controlling matrix/B4C particulate interaction in aluminium-boron carbide metal matrix composites. International Journal of Cast Metals Research. 2013. Vol. 26, Iss. 6. pp. 364–373.
6. Shi R., Meier J. M., Luo A. A. Controlling particle/metal interactions in metal matrix composites during solidification: the role of melt viscosity and cooling rate. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 2019. Vol. 50, Iss. 8. pp. 736–3747.
7. Liu X., Liu Y., Huang D., Han Q., Wang X. Tailoring in-situ TiB2 particulates in aluminum matrix composites. Materials Science and Engineering: A. 2017. Vol. 705. pp. 55–61.
8. Tyagi R. Synthesis and tribological characterization of in situ cast Al – TiC composites. Wear. 2005. Vol. 259, Iss. 1-6. pp. 569–576.
9. Pandee P., Sankanit P., Uthaisangsuk V. Structure-mechanical property relationships of in-situ A356/Al3Zr composites. Materials Science and Engineering: A. 2023. Vol. 866. pp. 144673.
10. Pramod S. L., Bakshi S. R., Murty B. S. Aluminum-based cast in situ composites: a review. Journal of Materials Engineering and Performance. 2015. Vol. 24. pp. 2185–2207.
11. Prusov E., Deev V., Rakhuba E. Aluminum matrix in-situ composites reinforced with Mg2Si and Al3Ti. Materials Today: Proceedings. 2019. Vol. 11, Part 1. pp. 386–391.
12. Bhandari R., Mallik M., Mondal M. K. Microstructure evolution and mechanical properties of in situ hypereutectic Al – Mg2Si composites. AIP Conference Proceedings. 2019. Vol. 2162. 020145.
13. Deev V. B., Prusov E. S., Ri E. Kh. Microstructural modification of In situ aluminum matrix composites via pulsed electromagnetic processing of crystallizing melt. Non-Ferrous Metals. 2023. No. 1. pp. 36–40.
14. Liu T., Li Y., Ren Y., Wang W. The microstructure and mechanical characterization of Al-30%Mg2Si composite with Y inoculation addition. Materials Research Express. 2018. Vol. 5, Iss. 7. pp. 076512.
15. Li C., Wu Y. Y., Li H., Liu X. F. Morphological evolution and growth mechanism of primary Mg2Si phase in Al – Mg2Si alloys. Acta Materialia. 2011. Vol. 59, Iss. 3. pp. 1058–1067.
16. Ghandvar H., Idris M. H., Ahmad N., Emamy M. Effect of gadolinium addition on microstructural evolution and solidification characteristics of Al – 15%Mg2Si in-situ composite. Materials Characterization. 2018. Vol. 135. pp. 57–70.
17. Wu X., Zhang G., Wu F., Wang Z. Influence of neodymium addition on microstructure, tensile properties and fracture behavior of cast Al – Mg2Si metal matrix composite. Journal of Rare Earths. 2013. Vol. 31, Iss. 3. pp. 307–312.
18. Si Y. Effect of Pr modification treatment on the microstructure and mechanical properties of cast Al – Mg2Si metal matrix composite. Advanced Materials Research. 2014. Vol. 936. pp. 23–27.
19. Jin Y., Fang H., Chen R., Wang J. et al. Morphological modification of Mg2Si phase and strengthening mechanism in Mg2Si/Al composites by Eu addition and T6 heat treatment. Journal of Materials Science and Technology. 2023. Vol. 159. pp. 151–162.
20. Prusov E., Shabaldin I., Deev V. Quantitative characterization of the microstructure of in situ aluminum matrix composites. Journal of Physics: Conference Series. 2021. Vol. 2131. 042040.
21. Li C., Wu Y., Li H., Wu Y., Liu X. Effect of Ni on eutectic structural evolution in hypereutectic Al–Mg2Si cast alloys. Materials Science and Engineering A. 2010. Vol. 528. pp. 573–577.
22. Zhang S. J., Han Q. Y., Liu Z. K. Thermodynamic modeling of the Al – Mg – Na system. Journal of Alloys and Compounds. 2006. Vol. 419. pp. 91–97.

Language of full-text russian
Full content Buy