Journals →  Chernye Metally →  2024 →  #4 →  Back

Production of pipes and Metal science
ArticleName Structure and properties of hot-rolled seamless pipes made of carbon and low-alloy steels after heat treatment
DOI 10.17580/chm.2024.04.06
ArticleAuthor I. V. Smarygina, A. S. Aleshchenko, A. E. Antoshchenkov, L. M. Kaputkina

National University of Science and Technology MISIS, Moscow, Russia

I. V. Smarygina, Cand. Eng., Associate Prof., Dept. of Metal Forming, e-mail:
A. S. Aleshchenko, Cand. Eng., Associate Prof., Head of the Dept. of Metal Forming, e-mail:

L. M. Kaputkina, Dr. Phys.-Math., Prof., e-mail:


Trading House “Siberian Industrial Group”, Moscow, Russia

A. E. Antoshchenkov, Cand. Eng., Technical Director, e-mail:


The temperature intervals of phase transformations and critical points of steels 09G2S, 20A, 36HG2S and DB at different heating and cooling rates have been clarified using dilatometric analysis. In order to achieve the specified characteristics of the pipe steels, schemes and heat treatment modes were proposed and tested in laboratory conditions, including using physical modeling of pipe reduction technology with subsequent heat treatment. The microstructure and mechanical properties of steels after heat treatment have been studied. Based on the research results, recommendations are given on the schemes and parameters of heat treatment and thermomechanical treatment of pipe products made of 09G2S, 20A and 36HG2S steels for use in real conditions in the production of seamless pipes using rolling or separate heating. It is shown that for steel 09G2S, the level of properties of pipes of strength classes K48, K50, K52 in a cold-resistant design can be realized with thermal improvement (quenching and high-temperature tempering) from separate or rolling heating, as well as with interrupted accelerated cooling from the end of rolling temperature with the formation of a fine-grained structure of ferrite and troostitesorbite. For steel 20A, in order to achieve the characteristics of strength classes K48, K50, K52, thermal improvement or interrupted cooling from the temperature of the end of rolling to obtain a fine-grained structure of ferrite and sorbite can also be recommended. The optimal heat treatment for the formation of strength properties for class N80 on steel 36HG2C is thermal improvement.

keywords Сarbon steels, low-alloy steels, seamless pipes, phase transformations, critical, oints, heat treatment, quenching, tempering, microstructure, mechanical properties

1. Bernshtein M. L., Kurdyumov G. V., Meskin V. S. et al. Metal science and heat treatment of steel and cast iron. Volume 3. General edition: A. G. Rakhstadt, L. M. Kaputkina, S. D. Prokoshkin, A. V. Supov. Moscow : Intermet Inzhiniring, 2007. 920 p.
2. Yankovsky V. M., Solomadina E. A., Krivosheeva A. A. et al. Hardening thermal and thermomechanical treatment of pipes. Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy informatsii. 1985. No. 16. pp. 11–28.
3. Marchenko L. G., Vyborshchik M. A. Thermomechanical hardening of pipes. Moscow : Intermet Inzhiniring, 2006. 237 p.
4. Marchenko L. G. Comparison of effectiveness of new technical solutions in thermomechanical processing of pipes. Stal. 2008. No. 2. pp. 68–70.
5. Arai Y., Kondo K., Hisamune N., Hitoshio K., Murase T. Microstructure control for high strength seamless line pipe by applying in-line QT process. Proceedings of the 17th IFHTSE Congress (17th International Federation for Heat Treatment and Surface Engineering Congress 2008, IFHTSE 2008, Japan, Kobe). 2008. Vol. 2. pp. 518–521.
6. Mayo U., Isasti N., Rodriguez-Ibabe J. M., Uranga P. Interaction between microalloying additions and phase transformation during intercritical deformation in low carbon steels. Metals. 2019. Vol. 9. 1049.
7. Tikhontseva N. T., Savchenko I. P., Bityukov S. M., Varnak O. V., Sofrygina O. A. Study of corrosion resistance of tubing made of ferrite-pearlite steel under the influence of carbon dioxide environments. Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2021. No. 5 (77). pp. 572–579.
8. Myakotina I. V., Khotinov V. A., Chernykh E. S., Konovalov S. S. et al. The influence of thermomechanical treatment on structure and mechanical properties of 38G2F pipe steel. Metallovedenie i termicheskaya obrabotka metallov. 2022. No. 9 (807). pp. 24–29.
9. Dergach T. A. Comprehensive studies of oil and gas pipelines manufactured using energysaving technology. Metallurgicheskaya i gornorudnaya promyshlennost. 2009. No. 3. pp. 100–103.
10. Godefroid L. B., Sena B. M., Trindade Filho V. B. Evaluation of microstructure and mechanical properties of seamless steel pipes API 5L type obtained by different processes of heat treatments. Materials Research. 2017. Vol. 20 (2). pp. 514–522.
11. Shiryaev A. G., Chetverikov S. G., Chikalov S. G., Pyshmintsev I. Yu., Krylov P. V. Technologies for manufacture of seamless steel pipes for production of hard-to-recover hydrocarbons. Izvestiya vuzov. Chernaya metallurgiya. 2018. Vol. 61. No. 11. pp. 866–875.
12. Ushakov A. S., Kondratov L. A. On steel pipe production. Stal. 2021. No. 6. pp. 22–32.
13. Yakovlev D. S., Mikurov V. V., Mashentseva M. S. Features of mechanical characteristics of mass-produced steel grades used in process pipelines in the operating temperature range. Vestnik YuUrGU. Seriya "Metallurgiya". 2022. Vol. 22. No. 3. pp. 11–27.
14. Dolzhenkov I. E., Gul Yu. P. Intensive technologies for hardening rolled metal, pipes and metal products. Stal. 1986. No. 10. pp. 69–73.
15. Guseva A. A., Petrova V. F. Study of influence of repeated heat treatment on visco-plastic properties of seamless pipes made of low-carbon steel grades. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta. 2019. No. 6 (229). pp. 87–90.
16. Hu J., Liu Y., Wang G., Li Q. et al. Effect of tempering treatment on microstructural evolution and mechanical behavior of heavy-wall heat induction seamless bend pipe. Materials. 2022. Vol. 15. 259.
17. Zhao B., Ai F., Yuan Q., Wu H. et al. Effect of normalizing on impact and corrosion resistance of low-temperature service seamless steel pipe. Journal of Physics: Conference Series, AMEE-2022, IOP Publishing. 2023. Vol. 2463. 012011.
18. Aleshchenko A. S., Budnikov A. S., Kharitonov E. A. Study of metal forming in the process of pipe reduction on a three-roll mill. Izvestiya vuzov. Chernaya metallurgiya. 2019. Vol. 62. No. 10. pp. 756–762.
19. Langbauer R., Nunner G., Zmek Th., Klarner J. et al. Investigation of the temperature distribution in seamless low-alloy steel pipes during the hot rolling process. Advances in Industrial and Manufacturing Engineering. 2021. Vol. 2. 100038.
20. Gorelik S. S., Dobatkin S. V., Kaputkina L. M. Recrystallization of metals and alloys. Moscow : MISiS, 2005. 432 p.
21. Efron L. I. Metal science in “big” metallurgy. Pipe steels. Moscow : Metallurgizdat, 2012. 696 p.
22. Silva Lima A. P., Faria G. L., Trindade Filho V. B., Cândido L. C. Effect of the chemical homogeneity of a quenched and tempered C-Mn steel pipe on the mechanical properties and phase transformations. Materials Research. 2019. Vol. 22, Iss. 4. e20180680.
23. Popova L. E., Popov A. A. TTT-diagrams of transformation of austenite in steels and beta solution in titanium alloys. Thermist’s Handbook. Moscow : Metallurgiya, 1991. 503 p.
24. GOST R ISO 6507-1–2007. Metal materials. Vickers hardness test. Part 1: Test method. Introduced: 01.08.2008.
25. GOST 1497–84. Metals. Methods of tension test. Introduced: 01.01.1986.
26. GOST 9454–78. Metals. Method for testing the impact strength bending test at low, room and high temperature. Introduced: 01.01.1979.
27. Sorokin V. G., Volosnikova A. V., Vyatkin S. A. et al. Steels and alloys grade guide. Under the general editorship V. G. Sorokin. Moscow : Mashinostroenie, 1989. 640 p.
28. GOST 31446–2017. Steel pipes for use as casing or tubing for wells. MOD. Introduced: 01.07.2018.

Language of full-text russian
Full content Buy