Journals →  Obogashchenie Rud →  2024 →  #1 →  Back

ArticleName Study of processes for the recovery of lithium ions from extremely saturated formation brines
DOI 10.17580/or.2024.01.02
ArticleAuthor Zelinskaya E. V., Filatova E. G., Khamaganova A. Yu., Kanenkin E. I.

Irkutsk National Research Technical University (Irkutsk, Russia)

Zelinskaya Е. V., Professor, Doctor of Engineering Sciences, Professor,
Filatova E. G., Associate Professor, Candidate of Engineering Sciences, Associate Professor,
Khamaganova A. Yu., Postgraduate Student,
Kanenkin E. I., Postgraduate Student,


The subsoil of the Irkutsk region is a source of highly mineralized waters (brines) containing a significant amount of lithium ions (up to 490 mg/dm3), rubidium (up to 11 mg/dm3), strontium (up to 4300 mg/dm3), bromine (up to 8200 mg/dm3), and other valuable components. This work examines the process of sorption recovery of lithium ions from extremely saturated formation brines. It also studies the effects of such factors as pH, concentration, temperature, and liquid-to-solid ratio (L : S) in the sorption–desorption cycles on the recovery process. Alkalinization of a natural brine to pH = 6–6.6 improves lithium sorption by 60 %. At higher temperatures, the exchange capacity decreases, which confirms the exothermic nature of the process under study. A reduction in the volume of the liquid phase during desorption leads to a higher concentration of lithium ions in the eluate. With a ratio of L : S = 25 : 1, lithium concentration in the eluate is 99.1 mg/dm3 and the degree of desorption is 72.5 %. At 100 : 1, the lithium concentration is 34.2 mg/dm3 and the degree of desorption is 100 %. It has been experimentally confirmed that a degree of desorption approaching 100 % is required to enable multiple repetitions of sorption–desorption cycles. Lower desorption degrees result in lower lithium concentrations in the sorbent with each cycle, preventing any repeated use of the sorbent. The results presented may be useful for specialists in the field of hydromineral raw materials processing when planning new research within the framework of national programs for the development of mineral resources.
The work was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation within the framework of the State Assignment to Universities program (FZZS-2023-0004).

keywords Natural brines, lithium ions, aluminum hydroxide, recovery, desorption

1. Kurkov A. V., Mamoshin M. Yu., Rogozhin A. A. Lithium: technologies of direct extraction from solutions (key
importance, new generation of solutions, promising objects). Мoscow: VIMS, 2021. 136 p.
2. Ryabtsev A.D., Kishkan' L. N., Kotsupalo N. P., Menzheres L. T. Preparation of lithium chloride and hydroxide from natural brines. Khimiya v Interesakh Ustoychivogo Razvitiya. 2001. No. 9. pp. 61–69.
3. Swain B. Recovery and recycling of lithium: a review. Separation and Purification Technology. 2017. Vol. 172. pp. 388–403.
4. Boyarko G. Yu., Khatkov V. Yu., Tkacheva E. V. Lithium raw potential in Russia. Izvestiya Tomskogo Politekhnicheskogo Universiteta. Inzhiniring Georesursov. 2022. Vol. 333, No. 12. pp. 7–16.
5. Kotsupalo N. P. Prospects for obtaining lithium compounds from natural brines. Khimiya v Interesakh Ustoychivogo Razvitiya. 2001. No. 9. pp. 243–253.
6. Mokhunov V. Yu., Gulyi N. I. Analysis of trends in modern technologies for the extraction of lithium from hydromineral raw materials. Nedropolzovanie XXI Vek. 2022. No. 4. pp. 38–50.
7. Wisniewska M., Fijalkowska G., Ostolska I., Franus W., Nosal-Wiercinska A., Tomaszewska B., Goscianska J., Wojcik G. Investigations of the possibility of lithium acquisition from geothermal water using natural and synthetic zeolites applying poly (acrylic acid). Journal of Cleaner Production. 2018. Vol. 195. pp. 821–830.

8. Luo X., Guo B., Luo J., Deng F. Recovery of lithium from wastewater using development of Li ion-imprinted polymers. ACS Sustainable Сhemistry & Еngineering. 2015. Vol. 3, No. 3. pp. 460–467.
9. Nishihama S., Onishi K., Yoshizuka K. Selective recovery process of lithium from seawater using integrated ion exchange methods. Solvent Extraction and Ion Exchange. 2011. Vol. 29, Iss. 3. pp. 421–431.
10. Chaban M. O., Rozhdestvenska L. M., Palchyk O. V., Dzyazko Y. S., Dzyazko O. G. Structural characteristics and sorption properties of lithium-selective composite materials based on TiO2 and MnO2. Applied Nanoscience. 2019. Vol. 9. pp. 1037–1045.
11. Navarrete-Casas R., Navarrete-Guijosa A., Valenzuela-Calahorro C., Lopez-Gonzalez J. D., Garcia-Rodriguez A. Study of lithium ion exchange by two synthetic zeolites: kinetics and equilibrium. Journal of Colloid and Interface Science. 2007. Vol. 306. pp. 345–353.
12. Menzheres L. T., Ryabtsev A.D., Mamylova E. V. Selective sorbent for lithium extraction from highly mineralized chloride brines. Izvestiya Tomskogo Politekhnicheskogo Universiteta. 2004. Vol. 307, No. 7. pp. 76–80.
13. Popov G. V. Lithium sorption by industrial cationites from the heat driver of the Paratuna deposit of the Kamchatka region. Ispolzovanie i Okhrana Prirodnykh Resursov v Rossii. 2019. No. 1. pp. 3–7.
14. Popov G. V. Studying the sorption of lithium ions from geothermal solutions by ion-exchange resins. Vestnik Tverskogo Gosudarstvennogo Universiteta. Seriya: Khimiya. 2019. No. 1. pp. 199–206.
15. Wang Q., Li M., Zhao B., Meng B., Chen W., Jiang Z., He X., Li B., Li X., Lin L. Electricity facilitates the lithium sorption from salt-lake brine by H3LiTi5O12 nanoparticles: Kinetics, selectivity and mechanism. Chemical Engineering Journal. 2023. Vol. 471. DOI: 10.1016/j.cej.2023.144532
16. Reich R., Danisi R. M., Kluge T., Eiche E., Kolb J. Structural and compositional variation of zeolite 13X in lithium sorption experiments using synthetic solutions and geothermal brine. Microporous and Mesoporous Materials. 2023. Vol. 359. DOI: 10.1016/j.micromeso.2023.112623
17. Mak Yu. T., Reis Meira A. C., Kreutz J. C., Luciane Effting L., Mello Giona R., Gervasoni R., Amado de Moura A., Bezerra F. M., Bail A. Exploring the surface reactivity of the magnetic layered double hydroxide lithium-aluminum: An alternative material for sorption and catalytic purposes. Applied Surface Science. 2019. Vol. 467–468. pp. 1195–1203.
18. Vasiliev V. P. Analytical chemistry. In 2 vols. Vol. 2. Physico-chemical methods of analysis. Мoscow: Drofa, 2009. 382 p.
19. Vasiliev V. P. Analytical chemistry. In 2 vols. Vol. 1. Titrimetric and gravimetric methods of analysis. Мoscow: Drofa, 2009. 366 p.
20. Pat. RU 2089500 Russian Federation.
21. Pat. RU 2113405 Russian Federation.
22. Pat. RU 2720420 Russian Federation.
23. Shchukin E. D., Pertsov A. V., Amelina E. A. Colloid chemistry. Moscow: Yurayt, 2013. 444 p.

Language of full-text russian
Full content Buy