Журналы →  Chernye Metally →  2024 →  №2 →  Назад

Additive Technologies and Powder Metallurgy
Название Hardness of consolidated powder steel 110G13 based on mechanically activated charges
DOI 10.17580/chm.2024.02.12
Автор S. N. Sergeenko
Информация об авторе

Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Russia
S. N. Sergeenko, Cand. Eng., Associate Prof., e-mail: sergeenko@gmail.com

Реферат

The regularities of the influence of the duration of the mechanical activation of the charge and the pressure of cold compaction on the hardness of steel 110G13 consolidated during sintering based on a mixture of Fe–FeMn–C powders processed in a planetary mill are established. With an increase in the duration of mechanical activation of the powder charge to 1.8 h, dispersion of charge particles, an increase in the porosity of cold-compacted moldings, activation of the sintering process and an increase in the hardness HV of sintered steel 110G13 are observed for the investigated pressure range of cold compaction of 500–875 MPa. A linear relationship between the porosity of sintered powder steel 110G13 and molding at a given pressure of cold compaction for the investigated duration of the charge mechanical activation has been revealed. The values of the consolidation coefficient are calculated, which characterize the degree of reduction in the porosity of the sintered workpiece with a decrease in the porosity of the cold-compacted molding. A nonlinear regression equation of the second order is constructed for the influence of the duration of mechanical activation on the values of the consolidation coefficient. Based on the results of X-ray phase analysis of consolidated powder steel 110G13, it was shown that when using a charge obtained with an increased duration of mechanical activation of 2.1 h, a Mn1.8Fe1.2C carbide phase is formed in the structure of the sintered material, which provides an increase in hardness. When using a charge processed for 1.05 hours, providing the maximum relative density, an increased hardness of 416 HV of consolidated steel 110G13 is observed. In the transition from dispersion to agglomeration (1.8 h), the maximum values of the consolidation coefficient are provided in the process of sintering powder steel 110G13. On the basis of the constructed sigmoidal dependence, the critical values of the cold compaction pressure and the duration of the charge mechanical activation are determined, which ensure the transition to increased hardness of powder steel 110G13.

Ключевые слова Powder steel 110G13, mechanoactivation, consolidation, hardness, X-ray diffraction analysis, scanning electron microscopy
Библиографический список

1. Davydov N. G. High-manganese steel. Moscow : Metallurgiya, 1979. 176 p.
2. Volynova T. F. High-manganese steels and alloys. Moscow : Metallurgiya, 1988. 341 p.
3. Dorofeev Yu. G. Dynamic hot pressing in metal ceramics. Moscow : Metallurgiya, 1972. 176 p.
4. Sergeenko S. N. Technologies for production of powder steel 110G13. 13th International Symposium “Powder metallurgy: surface engineering, new powder composite materials, welding”: proceedings. Minsk. 2023. pp. 181–185.
5. Sergeenko S. N. Methods of hot compaction of powder materials. Tekhnologiya metallov. 2009. No. 9. pp. 52–56.
6. Sergeenko S. N. Methods of hot compaction of powder materials. Tekhnologiya metallov. 2009. No. 10. pp. 45–54.
7. Sergeenko S. N. Compaction and consolidation 110G13 steel powder based on mechanically activated charges. Chernye Metally. 2019. No. 8. pp. 56–61.
8. Avvakumov E. G. Mechanical methods of activation of chemical processes. Novosibirsk : Nauka, 1986. 303 p.
9. Boldyrev V. V. Experimental methods in mechanochemistry of solid inorganic substances. Novosibirsk : Nauka, 1983. 65 p.
10. Chowdhury P., Canadinc D., Sehitoglu H. On deformation behavior of Fe–Mn based structural alloys. Materials Science and Engineering: R: Reports. 2017. Vol. 122. DOI: 10.1016/j.mser.2017.09.002
11. Volynova T. F. Formation of nanostructured compositions on friction surfaces of metastable structures of the Fe–Mn system is the basis for the creation of a new class of antifriction materials. Perspektivnye materialy. 2006. No. 3. pp. 34–47.
12. Malinov L. S., Malysheva I. E., Klimov E. S. et al. Effect of particular combinations of quenching, tempering and carburization on abrasive wear of low-carbon manganese steels with metastable Austenite. Materials Science Forum submitted. 2018. Vol. 945. pp. 574–578. DOI: 10.4028/www.scientific.net/MSF.945.574
13. Kusakin P. S., Kaibyshev R. O. Evolution of microstructure and mechanical properties of highmanganese steel with TWIP effect during rolling. Vestnik Tambovskogo Universiteta. Seriya: Estestvennye i tekhnicheskie nauki. 2013. Vol. 18. No. 4-2. pp. 1607, 1608.
14. Korshunov L. G., Chernenko N. L. Effect of aluminum on the structural transitions and the wear resistance of hadfield steel under friction. Physics of Metals and Metallography. 2018. Vol. 119. pp. 700–706.
15. Musikhin A. M. Steel 110G13L for critical dredge castings operating in difficult climatic and geological conditions. Vestnik Irkutskogo Gosudarstvennogo Tekhnicheskogo Universiteta. 2012. No. 11. pp. 57–60.
16. Savchenko N. L., Sevostyanova I. N., Utyaganova V. R., Gnyusov S. F. High-speed sliding of the WC–Hadfield steel composite on steel. XII International Conference : “Mechanics, resource and diagnostics of materials and structures”: proceedings. Yekaterinburg. 2018. p. 461.
17. Korshunov L. G., Sagaradze V. V., Chernenko N. L., Shabashov V. A. Influence of frictional nanostructuring on the state of the carbide phase in Hadfield steel. II International Conference “Deformation and Fracture of Materials and Nanomaterials”: proceedings. Moscow : IMET RAN, 2017. pp. 282–284.
18. Korshunov L. G., Sagaradze V. V., Chernenko N. L. Structural and phase transformations in Hadfield steel upon frictional loading in liquid nitrogen. Phys. Metals Metallogr. 2016. Vol. 117. pp. 828–833. DOI: 10.1134/S0031918X16080068
19. Xiong R., Peng H., Wang S., Si H. et al. Effect of stacking fault energy on work hardening behaviors in Fe–Mn–Si–C high manganese steels by varying silicon and carbon contents. Materials & Design. 2015. Vol. 85. pp. 707–714. DOI: 10.1016/j.matdes.2015.07.072
20. Wen Y. H., Peng H. B., Si H. T., Xiong R. L. et al. A novel high manganese austenitic steel with higher work hardening capacity and much lower impact deformation than Hadfield manganese steel. Materials & Design. 2014. Vol. 55. pp. 798–804.
21. Nikulina A. A., Smirnov A. I., Velikoselskaya E. Yu. Structural changes in Hadfield steel during cold deformation. Poverkhnost. Rentgenovskie, sinkhotronnye i neytronnye issledovaniya. 2013. No. 2. pp. 82–88.
22. Vdovin K. N., Feoktistov N. A., Gorlenko D. A., Nikitenko O. A. Investigation of microstructure of high-manganese steel, modified by ultra-dispersed powders, on the base of compounds of refractory metals. CIS Iron and Steel Review. 2017. Vol. 14. pp. 34–40.
23. Jeon J., Nam S., Kang S., Shin J. et al. Mechanical behavior of ultrafine-grained high-Mn steels containing nanoscale oxides produced by powder technology. Materials & Design. 2016. Vol. 92. pp. 73–78.
24. Boldyrev V. V. Mechanochemistry and mechanical activation of solids. Uspekhi khimii. 2006. No. 75 (3). pp. 203–218.
25. Sergeenko S. N. Technologies for producing powder materials based on mechanically activated charges (review). Tekhnologiya metallov. 2012. No. 1. pp. 46–56.
26. Sergeenko S. N. Technologies for producing powder materials based on mechanically activated charges (review). Tekhnologiya metallov. 2012. No. 5. pp. 46–55.
27. Sergeenko S. N. Technologies for producing powder materials based on mechanically activated charges (review). Tekhnologiya metallov. 2012. No. 6. pp. 47–56.
28. Roman O. V., Arunachalam V. S. Current problems of powder metallurgy. Moscow : Metallurgiya, 1990. 232 p.
29. Popovich A. A., Razumov N. G. Study of the process of mechanical alloying of iron with austeniteforming elements. Metallovedenie i termicheskaya obrabotka metallov. 2014. No. 10 (712). pp. 53–59.
30. Duan C., Chen C., Zhang J., Shen Y. et al. Nitriding of Fe–18Cr–8Mn stainless steel powders by mechanical alloying method with dual nitrogen source. Powder Technology. 2016. Vol. 294. pp. 330–337. DOI: 10.1016/j.powtec.2016.02.048
31. Chuvil’deev V. N., Nokhrin A. V., Baranov G. V. et al. Study of sintering processes of nano and ultrafine mechanically activated powders of the W–Ni–Fe system and production of ultrastrong heavy tungsten alloys. Metally. 2014. No. 2. pp. 51–66.
32. Chuvil’deev V. N., Nokhrin A. V., Boldin M. S. et al. The influence of high-energy mechanical activation on kinetics of solid-phase sintering of ultrafine-grained heavy tungsten alloy. Doklady Akademii nauk. 2017. Vol. 476. No. 3. pp. 285–289.
33. Chuvil’deev V. N., Nokhrin A. V., Boldin M. S. и др. Influence of high-energy ball milling on the solid-phase sintering kinetics of ultrafine-grained heavy tungsten alloy. Doklady Physics. 2017. Vol. 62, Iss. 9. pp. 420–424.
34. Kochetov N. A., Rogachev A. S., Shchukin A. S. et al. Mechanical alloying with partial amorphization of a multicomponent powder mixture Fe–Cr–Co–Ni–Mn and its electric spark plasma sintering to obtain a compact high-entropy material. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya. 2018. No. 2. pp. 35–42. DOI: 10.17073/1997-308X-2018-2-35-42
35. Sergeenko S. N. Kinetics of dispersion-agglomeration processes during mechanical activation of the charge of 110G13 powder steel. Chernye Metally. 2019. No. 7. pp. 47–52.

Language of full-text русский
Полный текст статьи Получить
Назад