Библиографический список |
1. Bizhanov A., Chizhikova V. Agglomeration in Metallurgy. Springer International Publishing. 2020. 454 p. 2. Yang, W.-C. Handbook of Fluidization and Fluid-Particle Systems. 2003. Vol. 1. 850 p. 3. Bizhanov A. Briquetting in Metallurgy. CRC Press. 2022. 326 p. 4. Holowaty M. O. History of Iron Ore Sintering Recalls Variety of Experimentation. JOM, The Journal of The Minerals, Metals & Materials Society (TMS). 1955. No. 7. pp. 19–23. DOI: 10.1007/BF03377448 5. de Moraes S. L., de Lima J. R. B., Ribeiro T. R. Iron ore pelletizing process: An Overview. Iron Ores and Iron Oxide Materials. 2018. 280 p. Ch. 3. 6. Mousa E., Ahmed H., Söderström D. Potential of Alternative Organic Binders in Briquetting and Enhancing Residue Recycling in the Steel Industry. Recycling. 2022. No. 7. pp. 21. DOI: 10.3390/recycling7020021 7. Ravich B. M. Briquetting in Ferrous and Nonferrous Metallurgy. Moscow. Metallurgy. 1975. 232 p. 8. Pavlov V. V. Inconsistencies in metallurgy. Their elimination. UGGU. 2013. 211 p. 9. Morris A. E. Iron Resources and Direct Iron Production. Encyclopedia of Materials: Science and Technology. 2001. pp. 4302–4310. 10. World DRI Statistics 2021. URL: https://www.midrex.com/wpcontent/uploads/MidrexSTATSBook2021.pdf 11. Seetharaman S., McLean A., Guthrie R., Sridhar S. Treatise on Process Metallurgy. Publisher Elsevier Ltd. 2013. Vol. 1. 952 p. 12. Kurunov I., Bizhanov A. Stiff Extrusion Briquetting in Metallurgy. Springer. 2018. 170 p. 13. Kumar D. S., Sah R., Sekhar V. R., Vishwanath S. C. Development and Use of Mill Scale Briquettes in BOF. Ironmaking & Steelmaking. 2017. Vol. 44. pp. 134–139. DOI: 10.1080/03019233.2016.1165499 14. Kola mining and metallurgical company continues reducing sulfur dioxide emissions. 31-07-2018. URL: https://www.nornickel.ru/news-and-media/press-releases-and-news/kolskaya-gmk-prodolzhaet-snizhat-vybrosy-dioksida-sery/ (access date: 05.08.2023). 15. Bizhanov A. M, Kurunov I. F. Extrusion briquettes (brexes) – the new stage in agglomeration of raw materials in the iron and steel industry. М. Metallurgizdat. 2017. 234 p. 16. Guzman I. Ya. Chemical technology of ceramics. Moscow. RIF “Stroimaterialy” JSC. 2003. 406 p. 17. BF No. 1: Continuation of technological researches. 28-07-2010. URL: http://www.kmz-tula.ru/articles-20100728.html (access date: 05.08.2023). 18. Naiker O., Riley T. Xstrata Alloys in Profile. Proceedings of the South African Pyrometallurgy. 2006. pp 297–305. 19. Davey K. P. The Development of an Agglomerate through the Use of FeMn Waste. Proceedings of the tenth international ferroalloy congress (INFACON X). 2004. Vol. 27. pp. 272–280. 20. The Russian briquetting line is put into practice at the metallurgical works in Leningrad region. 10-11-2019. URL: https://sdelanounas.ru/blogs/126816/ (access date: 05.08.2023). 21. Balashova L. The new briquetting line AKKERMANN METAL was put into operation at YuUGPK JSC. 25-07-2019. URL: https://www.ural56.ru/news/628602/ (access date: 05.08.2023). 22. Kurunov I. F., Bizhanov A. M. Brexes as the new stage in agglomeration of raw materials for blast furnaces. Metallurg. 2014. No. 3. pp. 49–53. 23. Bizhanov A. M. Substantiation of choosing the production technology and examination of metallurgical properties of briquettes in order to rise efficiency of their use in extraction processes of the iron and steel industry. Мoscow. MISiS. 2016. 152 p. 24. Bizhanov A. M., Steele R. B., Podgorodetskiy G. S., Kurunov I. F., Dashevskiy V. Y., Korovushkin V. V. Extruded Briquettes (Bricks) for Ferroalloy Production. Metallurgist. 2013. Vol. 56. pp. 925–932. 25. Chelyabinsk electrometallurgical plant mastered production of manganese brexes. 13-08-2018. URL: https://briket-brex.ru/news/chemk-osvoil-vypusk-vypusk-margantsevykh-breksov/ (access date: 05.08.2023). 26. Kazchrome started building of the USD 2.5 mln. shop for brexes production. 06-10-2016. URL: https://www.erg.kz/ru/news/585 (access date: 05.08.2023). 27. NLMK Group puts into practice new production facilities based on secondary resources. URL: https://lipetsk.nlmk.com/ru/media-center/press-releases/nlmk-group-launches-new-by-product-fuelled-facility/?from=en (access date: 05.08.2023). 28. Sigov A. A., Shurkhal V. A. Sintering process. Kiev. Tekhnika. 1969. 232 p. 29. Gubanov V. I., Tseitlin A. I. Reference book of a sintering plant worker. Chelyabinsk. Metallurgiya. 1987. 207 p. 30. Korotich V. I., Frolov Yu. A., Bezdezhskiy G. N. Sintering of raw materials. Ekaterinburg. UGTU-UPI. 2003. 400 p. 31. Zhilkin V. P., Doronin D. N. Sinter production. Technology, equipment, automation. Ekaterinburg. Uralskiy tsentr PR i reklamy. 2004. 292 p. 32. Marchenko N. V., Vershinina E. P., Gildebrandt E. M., Blednova B. P. Metallurgy of heavy non-ferrous metals. 2009. 394 p. 33. Chelyabinsk metallurgical plant delivered 150 mln. t of sinter. 28-02-2019. URL: https://mechel.ru/press/news/chmk-otgruzil-150-millionov-tonn-aglomerata/ (access date: 05.08.2023). 34. New MMK sintering plant: the most modern and green in Russia. 12-12-2019. URL: https://www.vnedra.ru/glavnaya-tema/novaya-aglofabrika-mmk-samaya-sovremennaya-i-zelenaya-vrossii-9299/#:~:text= (access date: 05.08.2023). 35. Yusfin Yu. S., Bazilevich T. N. Burning of iron ore pellets. Мoscow. Metallurgiya. 1973. 272 p. 36. Maerchak Sh. Manufacture of pellets. Мoscow. Metallurgiya. 1982. 232 p. 37. Zhuravlev F. M., Malysheva T. Ya. Pellets from concentrates of ferriferous quartzite. Moscow. Metallurgiya. 1991. 127 p.
38. Kokorin L. K., Leleko S. N. Production of oxidized pellets. Ekaterinburg. Uralskiy tsentr PR i reklamy. 2004. 280 p. 39. Bondarenko I. V., Tastanov E. A. Obtaining Multi-Component Pellets from Finely Dispersed Chromium Concentrates, Refined Ferrochrome Slags and Diatomite Raw Materials of Kazakhstan. Metallurgist. 2019. Vol. 62. pp. 1213–1218. DOI: 10.1007/s11015-019-00776-0 40. Oskol electrometallurgical plant produced 70th million ton of metalized pellets. 07-02-2019. URL: https://bel.ru/news/2019-02-07/oemk-proizvyol-70-millionnuyu-tonnu-metallizovannyhokatyshey-330276 (access date: 05.08.2023). 41. Ferreira F. B., Flores B. D., Osório E., Vilela A. C. F. Evaluation of Zinc Removal and Compressive Strength of Self-Reducing Pellets Composed of Electric Arc Furnace Dust. Rev. Esc. Minas. 2019. Vol. 72. pp. 71–77. DOI: 10.1590/0370-44672017720190 42. Hyun-Soo Kim, Minyoung Cho, Chang-Kuk Ko, Sunkwang Jeong and Sang-Ho Yi. Direct Use of Magnetite Concentrates in the Fluidized-Bed Reactors of FINEX®. Proceedings of the AISTech Conference. 2014. pp. 1-6. 43. Wolfinger T., Spreitzer D., Schenk J. Using Iron Ore Ultra-Fines for Hydrogen-Based Fluidized Bed Direct Reduction – A Mathematical Evaluation. Materials (Basel). 2022. Vol. 15. 3943. DOI: 10.3390/ma15113943 44. Burke P. D., Gul S. HIsmelt – the Alternative Ironmaking Technology. Proceedings of the International Conference on Smelting Reduction for Ironmaking. Jouhari A. K., Galgali R. K., Misra V. N. (Eds). 2002. pp. 61–71. 45. Li Y., Li H., Wang H., Qing S., Hu J., Hou Y., Li H., Li L. Smelting Potential of HIsmelt Technology for High-Phosphorus Iron Ore and Ilmenite. Proceedings of the International Conference on Computer Distributed Control and Intelligent Environmental Monitoring. CDCIEM 2011 (IEEE). 2011. pp. 1283–1286. 46. Zhang S., Hu P., Rao J., Wang Z., Zong Y., Zhang J. Effect of Smelting Time on Vanadium and Titanium Distribution Behavior and Slag Viscosity in HIsmelt. Metals. MDPI. 2022. 12. 1019. DOI: 10.3390/met12061019 47. Goodman N. J. The HIsmelt Technology: From Australia to China... and Back Again? Proceedings of the Iron Ore Conference 2019. 2019. pp. 3–13. 48. Gupta R. C., Prakash B. Effect of Firing Condition and Ingredients on the Swelling Behaviour of Iron Ore Pellets. Iron and Steel Institute of Japan International. 1993. Vol. 3. pp. 446–453. DOI: 10.2355/isijinternational.33.446 49. Gupta S. K., Lu W. K. Effect of Additives on the Strength, Reducibility and Swelling of Low Silica Iron Ore Pellets. Canadian Metallurgical Quarterly. 1987. Vol. 26. pp. 329–339. DOI: 10.1179/cmq.1987.26.4.329 50. Gupta R. C., Prakash B. Swelling of Iron Ore Pellets by Statistical Design of Experiment. Iron and Steel Institute of Japan International. 1992. Vol. 32. pp. 1268–1275. DOI: 10.2355/isijinternational.32.1268 51. Wang H., Sohn H. Y. Effects of Reducing Gas on Swelling and Iron Whisker Formation during the Reduction of Iron Oxide Compact. Steel Research International. 2012. Vol. 83. pp. 903–909. DOI: 10.1002/srin.201200054 52. Nakiboglu F. Mechanism of Swelling of Iron Oxide Pellets. PhD Thesis. 1981. 198 p. 53. Sharma T., Gupta R. C., Prakash B. Effect of Gangue Content on the Swelling Behaviour of Iron Ore Pellets. Minerals Engineering. 1990. No. 3. pp. 509–516. 54. Chang M., De Jonghe L. C. Whisker Growth in Reduction of Oxides. Metallurgical and Materials Transactions B. 1984. Vol. 15. pp. 685–694. DOI: 10.1007/BF02657290 55. Abdel Halim K. S., Bahgat M., El-Kelesh H. A., Nasr M. I. Metallic Iron Whisker Formation and Growth during Iron Oxide Reduction: Basicity Effect. Ironmaking & Steelmaking. 2009. Vol. 36. pp. 631–640. DOI: 10.1179/174328109X463020 56. John D. H. S., Nakiboglu F., Hayes P. C. The Effect of Sulfur on the Gaseous Reduction of Solid Calciowustites. Metallurgical and Materials Transactions B. 1986. Vol. 17. pp. 383–393. DOI: 10.1007/BF02655086 57. Li G. H., Tang Z. K., Zhang Y. B., Cui Z. X., Jiang T. Reduction Swelling Behaviour of Haematite/Magnetite Agglomerates with Addition of MgO and CaO. Ironmaking & Steelmaking. 2010. Vol. 37. pp. 393–397. DOI: 10.1179/030192310X12690127076352 58. El-Geassy A. A., Nasr M. I., Hessien M. M. Effect of Reducing Gas on the Volume Change during Reduction of Iron Oxide Compacts. Iron and Steel Institute of Japan International. 1996. Vol. 36. pp. 640–649. DOI: 10.2355/isijinternational.36.640 59. St. John D. H., Matthew S. P., Hayes P. C. The Breakdown of Dense Iron Layers on Wustite in CO/CO2 and H2/H2O Systems. Metallurgical and Materials Transactions B. 1985. Vol. 16. p. 857. DOI: 10.1007/BF02667525 60. Hayes P. C., Grieveson P. Microstructural Changes on the Reduction of Hematite to Maanetite. Metallurgical and Materials Transactions B. 1981. Vol. 12. pp. 579–587. DOI: 10.1007/ BF02654330 61. Hayes P. C., Grieveson P. The Effects of Nucleation and Growth on the Reduction of Fe2O3 to Fe3O4. Metallurgical and Materials Transactions B. 1981. No. 12. pp. 319–326. DOI: 10.1007/BF02654465 62. Jallouli M., Ajersch F. Analytical Model for the Swelling of Sintered Iron Oxide Pellets during the Haematite-Magnetite Transformation. Journal of Materials Science. 1986. Vol. 21. pp. 3528–3538. DOI: 10.1007/BF02402999 63. Edstrom J. O. The Mechanism of Reduction of Iron Oxides. The Journal of the Iron and Steel Institute. 1953. Vol. 175. pp. 289. 64. Kapelyushin Y., Sasaki Y., Zhang J., Jeong S., Ostrovski O. Effects of Temperature and Gas Composition on Reduction and Swelling of Magnetite Concentrates. Metallurgical and Materials Transactions B. 2016. Vol. 47. pp. 2263–2278. 65. Quader M. A., Ahmed S., Ghazilla R. A. R., Ahmed S., Dahari M. A. Comprehensive Review on Energy Efficient CO2 Breakthrough Technologies for Sustainable Green Iron and Steel Manufacturing. Renewable and Sustainable Energy Reviews. 2015. Vol. 50. pp. 594–614. DOI: 10.1016/j.rser.2015.05.026 66. Ma Y., Souza Filho I. R., Bai Y., Schenk J., Patisson F., Beck A., van Bokhoven J. A., Willinger M. G., Li K., Xie D. et al. Hierarchical Nature of Hydrogen-Based Direct Reduction of Iron Oxides. Scripta Materialia. 2022. Vol. 213. 114571. DOI: 10.1016/j.scriptamat.2022.114571 67. Orth A., Anastasijevic N., Eichberger H. Low CO2 Emission Technologies for Iron and Steelmaking as Well as Titania Slag Production. Minerals Engineering. 2007. Vol. 20. pp. 854–861. DOI: 10.1016/j.mineng.2007.02.007 68. The first Russian green metallurgy project Ecolant obtained starting investment from domestic banks for Euro 33 mln. 30-06-2021. URL: https://omk.ru/press/news/32963/ (access date: 05.08.2023). 69. RF power engineering strategy until 2035. URL: https://minenergo.gov.ru/node/1026?ysclid=l9mmahyl3z906956639 (access date: 05.08.2023). 70. RF Government approved the plan with measures for development of hydrogen power engineering. URL: https://minenergo.gov.ru/node/19194?ysclid=l9mmch6gp0222207625 (access date: 05.08.2023). 71. Litvinenko V. S., Tsvetkov P. S., Dvoinikov M. V., Buslaev G. V. The barriers to realization of hydrogen initiatives within the context of sustainable development of global power engineering. Zapiski Gornogo instituta. 2020. Vol. 244. pp. 428–438. 72. Cavaliere P. Electrolysis of Iron Ores: Most Efficient Technologies for Greenhouse Emissions Abatement. In: Clean Ironmaking and Steelmaking Processes. Springer. 2019. pp. 555–576. DOI: 10.1007/978-3-030-21209-4_10 |