Журналы →  Tsvetnye Metally →  2023 →  №10 →  Назад

BENEFICIATION
Название A kinetic study of reagent flotation to improve the flotation contrast of sulphide minerals
DOI 10.17580/tsm.2023.10.02
Автор Ignatkina V. A., Kayumov A. A., Yergesheva N. D., Chernova P. A.
Информация об авторе

National University of Science and Technology MISiS, Moscow, Russia

V. A. Ignatkina, Professor at the Department of Beneficiation and Processing of Mineral and Secondary Raw Materials, Doсtor of Technical Science, Professor, e-mail: woda@mail.ru
A. A. Kayumov, Lead Project Engineer, Candidate of Technical Science, e-mail: maliaby_92@mail.ru
N. D. Yergesheva, Postgraduate Student at the Department of Beneficiation and Processing of Mineral and Secondary Raw Materials, e-mail: nazymarzu.zharolla@mail.ru
P. A. Chernova, 5th year Specialist Degree Student, e-mail: polina_nenay@mail.ru

Реферат

This paper describes experimental data suggesting that the qualitative and quantitative composition of sulphydryl collectors (butyl xanthate, dithiophosphate and thionocarbamate), the size of molybdenum in a mixture with pyrite and the concentration of modifiers (sodium thiosulphate, sodium sulphide, hydrogen peroxide) do influence the specific rate of flotation of monomineral fractions of chalcopyrite, pyrite, molybdenum, their mixtures, as well as copper sulphides from copper pyrites. A changed ratio of dithiophosphate (xanthate) and thionocarbamate in the collector can both maintain the low flotation activity of iron sulphides and increase the collecting activity in relation to iron sulphides. The authors established a synergic action of the combination of sulphydryl collectors with an effective ratio of components. Use of modifiers in the reagent flotation of sulphides at their critical concentration of 4.4·10–3 mol/l (which corresponds to the following bulk concentrations: sodium thiosulphate — 700 mg/l, sodium sulphide — 343 mg/l and hydrogen peroxide — 150 mg/l) indicates that sulphoxide compounds bring down the flotation rate constant for all sulphides. The effect of peroxide on the floatability of pyrite is governed by the oxidation degree of the initial surface: for stale pyrite, k increases from 0.62 to 1.15 min–1; after preliminary alkaline treatment of the pyrite fraction, k, on the contrary, decreases from 0.43 to 0.36 min–1. The flotation rate constant is shown to drop by 1.3 times – from 1.16 min–1 (–2+0.074 mm) to 0.9 min–1 (–44+10 μm) – as the initial size of molybdenum in the mixture with pyrite is reduced, with the size distribution of pyrite and the weight of components in the sulphide mixture remaining unchanged. In the case of flotation of copper sulphides from massive copper sulphide ore, the lowest flotation performance is associated with the use of butyl xanthate (βCu = 10.1%; εCu = 2.72%; S = 4.8 and k = 0.067 min–1), whereas the best flotation performance was achieved when using a combination of DTP and TC (Z-200) at the effective component ratio (βCu = 21.8%; εCu = 17.4%; S = 11.5 and k = 0.251 min–1).
Support for this research was provided under Grant No. 22-27-00102 by the Russian Science Foundation, https://rscf.ru/project/22-27-00102/.

Ключевые слова Flotation, pyrite, molybdenum, ore, copper sulphides, sulphydryl collectors, sodium thiosulphate, sodium sulphide, peroxide, specific rate of flotation
Библиографический список

1. Decree no. [2473-р] dated 30 August 2022 by the Government of the Russian Federation. The official web portal of legal information. Available at: http://publication.pravo.gov.ru/Document/View/0001202208310002 (Accessed: 17.11.2022).
2. Beneficiation of the Urals copper and copper-zinc ores. Moscow : Nauka, 2016. 381 p. Available at: https://www.rfbr.ru/rffi/ru/books/o_1966706#1
3. Gusev A. A. Looking for ways to raise the recovery of noble metals from the Urals sulphide ores. Obogashchenie Rud. 2006. No. 1. pp. 12–18.
4. Bustamante-Rúa M. O., Najanjo-Gómez D. M., Daza-Aragón A. J., Bustamante- Baena P. et al. Flash flotation of free coarse gold using dithiophosphate and dithiocarbamate as a replacement for traditional amalgamation. DYNA. 2018. Vol. 85, Iss. 205. pp. 163–170. DOI: 10.15446/dyna.v85n205.69882
5. Ignatkina V. A. IMPC 2018 – 29th International Mineral Processing Congress, Moscow, 17–21 September 2018. Summary. Tsvetnye Metally. 2019. No. 2. pp. 71–79.
6. Ignatkina V. A., Kayumov A. A., Yergesheva N. D. Floatability and calculated reactivity of gold and sulfide minerals. Russian Journal of Non-Ferrous Metals. 2022. Vol. 63. pp. 473–481. DOI: 10.3103/S1067821222050054
7. Chanturiya V. A., Matveeva T. N., Ivanova T. A., Gromova N. K. et al. A study of new complexing agents for selection of gold-bearing pyrite and arsenopyrite. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopaeymykh. 2011. No. 1. pp. 81–89.
8. Matveeva T. N., Nedosekina T. V., Ivanova T. A. Selective flotation of goldbearing sulphides: Theoretical aspects. Gornyi Zhurnal. 2005. No. 4. pp. 56–59.
9. Ma X., Bruckard W. J. Rejection of arsenic minerals in sulfide flotation — a literature review. International Journal of Mineral Processing. 2009. Vol. 93. pp. 89–94. DOI: 10.1016/j.minpro.2009.07.003
10. Plaksin I. N., Myasnikova G. A., Okolovich A. M. Flotation of arsenicpyrite ores. Moscow : Izdatelstvo AN SSSR, 1955. 111 p.
11. Ignatov D. O., Kayumov A. A., Ignatkina V. A. Selective separation of arsenic-containing sulfide minerals. Tsvetnye Metally. 2018. No. 7. pp. 32–38.
12. Sedelnikova G. V. Pressure and bacterial leaching of refractory ores and concentrates. Current status and potential application in domestic industry. Plaksin Readings 2013: International meeting. 16–19 September 2013, Tomsk.
13. Park K., Choi J., Gomez-Flores A., Kim H. Flotation behavior of arsenopyrite and pyrite, and their selective separation. Material Transaction. 2015. Vol. 56, Iss. 3. pp. 435–440. DOI: 10.2320/matertrans.M2014369
14. Forson P., Zanin M., Skinner W., Asamoah R. Differential flotation of pyrite and arsenopyrite: effect of pulp aeration and the critical importance of collector concentration. Minerals Engineering. 2022. Vol. 178. 107421, DOI: 10.1016/j.mineng.2022.107421
15. Bradshaw D. J., Harris P. J., O’Connor C. T. Synergistic interactions between reagents in sulphide flotation. Journal of The South African Institute of Mining and Metallurgy. July/August 1998. pp. 189–194.
16. McFadzean B., Mhlanga S. S., O’Connor C. T. The effect of thiol collector mixtures on the flotation of pyrite and galena. Minerals Engineering. 2013. Vol. 50-51. pp. 121–129. DOI: 10.1016/j.mineng.2013.06.018
17. Bocharov V. A., Ignatkina V. A., Khachatryan L. S. Basic principles of selecting and using combinations of selective collectors and depressants of sulphide minerals with similar physico-chemical properties. Izvestiya vuzov. Tsvetnaya metallurgiya. 2008. No. 1. pp. 1–5.
18. Bin X., Wu J., Dong Zh., Jiang T. et al. Flotation performance, structure– activity relationship and adsorption mechanism of a newly-synthesized collector for copper sulfide minerals in Gacun polymetallic ore. Applied Surface Science. 2021. Vol. 551. 149420. DOI: 10.1016/j.apsusc.2021.149420
19. Forson Ph., Skinner W., Asamoah R. Decoupling pyrite and arsenopyrite in flotation using thionocarbamate collector. Powder Technology. 2021. Vol. 385. pp. 12–20. DOI: 10.1016/j.powtec.2021.02.057
20. Mao L., Yoon R.-H. Predicting flotation rates using a rate equation derived from first principles. International Journal of Mineral Processing. 1997. Vol. 51. pp. 171–181.
21. Ignatkina V. A., Bocharov V. A., Dyachkov F. G. Collecting properties of diisobutyl dithiophosphinate in sulfide mineral flotation from sulfide ore. Journal of Mining Science. 2013. Vol. 49, No. 5. pp. 795–802. DOI: 10.1016/j.cis.2021.102466
22. Ignatkina V. A., Aksenova D. D., Kayumov A. A., Ergesheva N. D. Hydrogen peroxide in reagent flotation of copper sulphide ores. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopaeymykh. 2022. No. 1. pp. 139–144.
23. Klassen V. I., Mokrousov V. A. Introduction to the theory of flotation. Moscow : Gosgortekhizdat, 1959. 636 p.
24. Wang X., Yuan Sh., Liu J., Zhu Yu. et al. Nanobubble-enhanced flotation of ultrafine molybdenite and the associated mechanism. Journal of Molecular Liquids. 2022. Vol. 346. 118312. DOI: 10.1016/j.molliq.2021.118312
25. Castro S., Lopez-Valdivieso A., Laskowski J. S. Review of the flotation of molybdenite. Part I: Surface properties and floatability. International Journal of Mineral Processing. 2016. Vol. 148. pp. 48–58. DOI: 10.1016/j.minpro.2016.01.003
26. Moslemi H., Gharabaghi M. A review on electrochemical behavior of pyrite in the froth flotation process. Journal of Industrial and Engineering Chemistry. 2017. Vol. 47. pp. 1–18. DOI: 10.1016/j.jiec.2016.12.012

Полный текст статьи A kinetic study of reagent flotation to improve the flotation contrast of sulphide minerals
Назад