Журналы →  Tsvetnye Metally →  2023 →  №9 →  Назад

NANOSTRUCTURED METALS AND MATERIALS
Название Production of silver nanoparticles by laser ablation in liquid and their potential use in medicine
DOI 10.17580/tsm.2023.09.05
Автор Zharikov V. M., Gorbatyuk S. M., Nagovitsyn V. A., Shinkarev A. S.
Информация об авторе

National University of Science and Technology MISiS, Moscow, Russia:

V. M. Zharikov, Department of Production Equipment Engineering, Associate Professor, Candidate of Technical Sciences, e-mail: zharicow@yandex.ru
S. M. Gorbatyuk, Department of Production Equipment Engineering, Professor, Doctor of Technical Sciences, e-mail: sgor02@mail.ru
V. A. Nagovitsyn, Department of Production Equipment Engineering, Assistant Lecturer, e-mail: nagovitsin.91@mail.com
A. S. Shinkarev, Department of Production Equipment Engineering, Associate Professor, Candidate of Technical Sciences, e-mail: shinkaryov@gmail.com

Реферат

The authors of this paper use a report by the World Health Organization, which stresses the concern about uncontrolled use of antibiotics, to reason in favour of a widespread use of silver nanoparticles. The paper presents a chronological order of research studies that looked at the biological properties of silver. The authors stress the need for silver ions to be present in the daily human diet and at the same time point out the hazard of exceeding the maximum allowable concentration of silver in the human body. Considering the antimicrobial and antiviral properties of this metal, the paper gives some examples of its possible use for medical protective equipment, general-purpose plastic items, as well as for the production of chemical fiber with antibacterial and antiviral properties. A method of laser ablation in liquid is given as an example of the process for obtaining a solution containing nanoparticles of silver. It is a universal method and can be used in a wide range of changed impact (laser emission spectrum, exposure time, pulse energy) and environmental conditions, also by way of selecting the right solvent. Due to its high performance and high pulse repetition rate, copper vapour laser offers the most convenient tool to implement laser ablation in liquid. The available commercial laser model of Kulon-10M can produce up to 60 litres of solution with silver nanoparticles per hour. The paper also describes ways to optimize the nanoparticle in solution production process and raise its performance by using additional solvent tanks and introducing automatic drain and fill valves.

Ключевые слова Protective equipment, nanoparticles, copper vapour laser, laser ablation in liquid, solution, antibacterial properties, silver, pulse, emission spectrum
Библиографический список

1. Agents J., Galdiero S., Falanga A., Vitiello M. et al. Silver nanoparticles as potential antiviral. Molecules. 2015. Vol. 20, Iss. 5. DOI: 10.3390/molecules20058856
2. Lu L., Sun R., Chen R. et al. Silver nanoparticles inhibit hepatitis B virus replication. Antiviral Therapy. 2008. Vol. 13. pp. 253–262. DOI: 10.1177/135965350801300210
3. Shady N. H., Khattab A., Safwat A. et al. Hepatits C virus NS3 protease and helicase inhibitors from red sea sponge (amphimedon) species in green synthesized silver nanoparticles assisted by in silico modeling and metabolic profiling. International Journal of Nanomedicine. 2020. Vol. 15. DOI: 10.2147/IJN.S233766
4. Humberto H., Nilda V., Liliana I. et al. Mode of antiviral action of silver nanoparticles against HIV-1. Nanobiotechnology. 2010. Vol. 8, Iss. 1. DOI: 10.1186/1477-3155-8-1
5. Zhang E., Zhao X., Hu J., Wang R. et al. Antibacterial metals and alloys for potential biomedical implants. Bioactive Materials. 2021. Vol. 6. pp. 2569–2612. DOI: 10.1016/j.bioactmat.2021.01.030
6. Yakoubi A., Dhafer C. B. Advanced plasmonic nanoparticle-based techniques for the prevention, detection, and treatment of current COVID-19. Plasmonics. 2023. Vol. 18. pp. 311–347.
7. Jeffery K., Ann H., Amy E. et al. Initial genetic characterization of the 1918 “Spanish” influenza virus. Science. 1997. Vol. 275. DOI: 10.1126/science.275.5307.1793
8. Karpova L. S., Sominina A. A., Burtseva E. I. A comparison of influenza pandemics in Russia caused by pandemic influenza virus A(H1N1) pdm09 in the period from 2009 to 2013. Problems of Virology. 2015. No. 3. pp. 19–24.
9. Hauge S. H., Bakken I. J., de Blasio B. F., Haberg S. E. Burden of medically attended influenza in Norway 2008–2017. Influenza and Other Respiratory Viruses. 2019. Vol. 13, Iss. 3. pp. 240–247. DOI: 10.1111/irv.12627
10. Devyatiarova V. V., Balakhnina E. E., Valeeva, L. M. Development of a mathematical model for a workpiece heating and cooling in a protective medium while treatment under pressure. Defect and Diffusion Forum. 2021. Vol. 410. pp. 115–122. DOI: 10.4028/www.scientific.net/DDF.410.115
11. Gornyi S. G., Yudin K. V., Yurevich V. I. New techniques for laser processing of electronic engineering materials. Nanoindustry. 2021. Vol. 14, No. S7 (107). pp. 587–588.
12. Tovmasyan M. A., Samusev S. V., Kholodova N. V., Myalkin I. V. Study of the expansion process taking into account the contact interaction of the deforming tool and pipe. Chernye Metally. 2022. No. 7. pp. 42–46.
13. Nefedov A. V., Shkurko T. G., Chichenev N. A., Kholodova N. V. Modernization of hopper car for transportation of agglomerate and other materials. Izvestiya vuzov. Chernaya metallurgiya. 2022. Vol. 65, No. 11. pp. 824–830.
14. Chichenev N. A., Gorbatyuk S. M., Naumova M. G., Morozova I. G. Using the similarity theory for description of laser hardening processes. CIS Iron and Steel Review. 2020. Vol. 19. pp. 44–47.
15. Zharikov V. M., Sharapov D. G. Method of medical mask manufacturing. Patent RF, No. 2426484. Applied: 11.03.2010. Published: 20.08.2011.
16. Mikhaylov S. B., Gornyi S. G., Zhukov N. V. Efficiency of metal ablation with a scanning pulsed beam of a nanosecond optical fiber YB:YAG laser. Fizika i khimiya obrabotki materialov. 2021. No. 3. pp. 5–23.
17. Myslitskaya N. A., Borkunov R. Yu., Tsarkov M. V., Slezhkin V. A. et al. Heat transfer in a drop of water with a pigment and nanoparticles under double laser impact. Technical Physics. 2020. Vol. 90, No. 8. pp. 1323–1332.
18. Kazakevich P. V., Yaresko P. S., Kazakevich D. A. Laser ablation of the golden target situated in external electric field. Lasers in Science, Engineering, Medicine. Proceedings of the 31st International Conference. Ed. by V. A. Petrov. Moscow, 2020. pp. 237–242.
19. Grigoriants A. G., Sokolov A. A. Laser processing of non-metallic materials. Book 4. 3rd standard edition. Moscow–Berlin : Direkt-Media, 2021. 192 p.
20. Veremeevich A. N., Gorbatyuk S. M., Zharikov V. M., Nagovitsyn V. A. Potential application of laser equipment for metal working. Zagotovitelnye proizvodstva v mashinostroenii. 2021. Vol. 19, No. 7. pp. 331–335. DOI: 10.36652/1684-1107-2021-19-7-331-335
21. Naumova M. G., Morozova I. G., Nagovitsyn V. A. Laser radiation parameters and their effect on metal surface topology and colours. Engineering of production equipment and processes. 2017. No. 5. pp. 37–40.
22. Petkova A. P., Ganzulenko O. Yu. Laser marking of non-ferrous metal and alloy products using ultradense barcodes: process features. Tsvetnye Metally. 2022. No. 7. pp. 92–97.
23. Ganzulenko O. Y., Petkova A. P. Simulation and approbation of the marking laser process on metal materials. Journal of Physics: Conference Series. 2021. DOI: 10.1088/1742-6596/1753/1/012016

Language of full-text русский
Полный текст статьи Получить
Назад