Journals →  Gornyi Zhurnal →  2023 →  #9 →  Back

ArticleName Multiplicative method to assess fire and explosion hazard of mine air containing hydrocarbon gases
DOI 10.17580/gzh.2023.09.05
ArticleAuthor Rodionov V. A., Seregin A. S., Ikonnikov D. A.

Empress Catherine II Saint Petersburg Mining University, Saint-Petersburg, Russia:

V. A. Rodionov, Associate Professor, Candidate of Engineering Sciences,
A. S. Seregin, Associate Professor, Candidate of Engineering Sciences
D. A. Ikonnikov, Associate Professor, Candidate of Engineering Sciences


The brief statistics on underground mines, accident rate and fatal injury rate is given. From the review of the research data and Rostekhnadzor’s reports, it is concluded on the lack of actions aimed at elimination, prevention and/or precaution of incidents and accidents (emergency situations) at underground mining facilities. One of the causes of such emergencies may probably be insufficient attention to the assessment of fire and explosion hazards of substances in composition of mine air. Emphasis is laid on the substances which can enter mine air in case of an incident and/or accident of any type. As an approach to the assessment of fire and explosion hazard of mine air, the authors propose the multiplicative method integrating sampling techniques, special sample preparation and analytical survey of samples. The analytical processes included in the multiplicative method by the authors are the combination of analytical chromatography and mass-spectroscopy. Based on the research, it is recommended to develop an assessment procedure for the fire and explosion hazard of mine air, with regard to a wider spectrum of substances which can enter underground roadways as a result of various processes. It is suggested to use the procedure based on explosion triangle imaging developed for coal mines as a prototype standard.

keywords Mine air, air, oil mine, analytical chromatography, mass-spectroscopy, fire and explosion hazard, toxic gases, liquid hydrocarbons

1. Federal Environmental, Industrial and Nuclear Supervision Service Annual 2021 Report. Moscow : NTTs PB, 2022. 407 p.
2. Petrenko I. E. Russia’s coal industry performance for January–December, 2021. Ugol. 2022. No. 3. pp. 9–23.
3. Kabanov E. I. Allowable occupational injury risk assessment in coal mining industry. GIAB. 2022. No. 5. pp. 167–180.
4. Kabanov E. I., Korshunov G. I., Rodionov V. A. Expert system based on fuzzy logic for assessment of methane and dust explosion risk in coal mines. Gornyi Zhurnal. 2019. No. 8. pp. 85–88.
5. Rodionov V. A., Karpov G. N., Leisle A. V. Methodological approach to the need to assess the explosion and fire hazard properties of sulfide-containing polymetallic ores. GIAB. 2022. No. 6-1. pp. 198–213.
6. Rodionov V., Tumanov M., Skripnik I., Kaverzneva T., Pshenichnaya C. Analysis of the fractional composition of coal dust and its effect on the explosion hazard of the air in coal mines. IOP Conference Series: Earth and Environmental Science. 2022. Vol. 981, No. 3. 032024. DOI: 10.1088/1755-1315/981/3/032024
7. Abiev Z. A., Rodionov V. A., Paramonov G. P., Chernobay V. I. Method to investigate influence of inhibitory and phlegmatizing agents on ignitability and explosibility of coal dust. GIAB. 2018. No. 5. pp. 26–34.
8. Korshunov G. I., Rudakov M. L., Kabanov E. I. The use of a risk-based approach in safety issues of coal mines. Journal of Environmental Management and Tourism. 2018. Vol. IX, No. 1(25). pp. 181–186.
9. Kornev A. V., Korshunov G. I., Kudelas D. Reduction of dust in the longwall faces of coal mines: problems and perspective solutions. Acta Montanistica Slovaca. 2021. Vol. 26(1). pp. 84–97.
10. Gridina E. B., Kovshov S. V., Borovikov D. O. Hazard mapping as a fundamental element of OSH management systems currently used in the mining sector. Nauchnyi vestnik Natsionalnogo gornogo universiteta. 2022. No. 1. pp. 107–115.
11. Vasilets V. N., Afanasev P. I., Pavlovich A. A. Safe operation of mining-and-transport system under impact of seismic shot waves. GIAB. 2020. No. 1. pp. 26–35.
12. Fomin S. I., Ivanov V. V., Semenov A. S., Ovsyannikov M. P. Incremental open-pit mining of steeply dipping ore deposits. ARPN Journal of Engineering and Applied Sciences. 2020. Vol. 15, No. 11. pp. 1306–1311.
13. Klimova I. V., Smirnov Yu. G., Rodionov V. A. Modeling of the interrelations between the working conditions and the health of oil sheds personnel using fuzzy logic. Bezopasnost truda v promyshlennosti. 2022. No. 1. pp. 46–50.
14. Semin M. A., Isaevich A. G., Trushkova N. A., Bublik S. A., Kazakov B. P. Calculating dispersion of air pollutants in mines. Journal of Mining Science. 2022. Vol. 58, No. 2. pp. 246–256.
15. Kaledina N. O., Malashkina V. A. Indicator assessment of the reliability of mine ventilation and degassing systems functioning. Journal of Mining Institute. 2021. Vol. 250. pp. 553–561.
16. Romanchenko S. B., Naganovskiy Yu. K., Kornev A. V. Innovative ways to control dust and explosion safety of mine workings. Journal of Mining Institute. 2021. Vol. 252. pp. 927–936.
17. Skopintseva O. V., Balovtsev S. V. Air quality control in coal mines based on gas monitoring statistics. GIAB. 2021. No. 1. pp. 78–89.
18. Balovtsev S. V. Comparative assessment of aerological risks at operating coal mines. GIAB. 2021. No. 2-1. pp. 5–17.
19. Khokhlov S. V., Sokolov S. T., Vinogradov Yu. I., Frenkel I. B. Conducting industrial explosions near gas pipelines. Journal of Mining Institute. 2021. Vol. 247. pp. 48–56.

20. Xinchun Li, Xiaolin Zhang, Quanlong Liu, Yueqian Zhang, Xiao Gu et al. Research on coal mine building compliance inspection system based on accident causation and BIM in China. International Journal of Environmental Research and Public Health. 2022. Vol. 19, Iss. 24. 16466. DOI: 10.3390/ijerph192416466
21. Zubov V. P., Phuc L. Q. Development of resource-saving technology for excavation of flat-lying coal seams with tight roof rocks (on the example of the Quang Ninh coal basin mines). Journal of Mining Institute. 2022. Vol. 257. pp. 795–806.
22. Semenov A. S., Kuznetcov V. S. Assessment of level of risk in decision-making in terms of career exploitation. International Journal of Economics and Financial Issues. 2015. Vol. 5, No. 3S. Special Issue. pp. 165–172.
23. Gendler S., Prokhorova E. Risk-based methodology for determining priorit y directions for improving occupational safety in the mining industry of the Arctic Zone. Resources. 2021. Vol. 10, Iss. 3. DOI: 10.3390/resources10030020
24. Kalach A. V., Cherepakhin A. M., Kalach E. V. Fire hazard assessment methodology for combustible medium based on substances handling at oil and gas facilities. Tekhnosfernaya bezopasnost. 2019. No. 4(25). pp. 57–61.
25. Rowley J. R., Rowley R. L., Wilding W. V. Prediction of pure-component flash points for organic compounds. Fire and Materials. 2011. Vol. 35, Iss. 6. pp. 343–351.
26. Nikitina S. I., Kononov M. A., Stepanov Yu. A. Creation of a system of automated monitoring and accounting of roof offsets of underground products. East European Scientific Journal. 2020. No. 5-2(57). pp. 55–59.
27. Kazanin O. I., Ilinets A. A. Ensuring the excavation workings stability when developing excavation sites of flat-lying coal seams by three workings. Journal of Mining Institute. 2022. Vol. 253. pp. 41–48.
28. Isaevich A. G., Starikov A. N., Maltsev S. V. Improvement of air sampling method to determine relative concentration of combustion gases in mine air. GIAB. 2021. No. 4. pp. 143–153.
29. Maltsev S. V., Chaykovskiy I. I. Oxidation of sulfide ore in complex ore deposits. Gornoe ekho. 2022. No. 2(87). pp. 114–118.
30. Farakhutdinova Z. G., Bakhonina E. I., Shutov N. V. Improvement of interaction mechanism between oil refining enterprises and contractors. Bezopasnost tekhnogennykh i prirodnykh sistem. 2022. No. 3. pp. 18–23.
31. Mamaev K. V. Application of water steam in the oil and gas industry. Available at: (accessed: 15.06.2023).
32. Shafranik Yu. K., Kryukov V. A. Oil in space and “oil space”. Energeticheskaya politika. 2018. No. 3. pp. 69–73.
33. Mustafin I. A., Sidorov G. M., Stankevich K. E., Bayram-Ali T. M., Salishev A. I. et al. Hydrocatalytic processes of heavy oil factions processing with use of perspective nanoscale catalysts. Fundamentalnye issledovaniya. 2018. No. 7. pp. 22–28.
34. Kiekbaev A. A., Aliev F. A., Mitroshin A. V., Andreev D. V., Vakhin A. V. Heavy oil conversion in the presence of rock-forming mineral components in aqua-thermolysis. Neftegaz.RU. 2021. No. 4(112). pp. 24–27.
35. Poletaeva O. Yu., Leontev A. Yu. Heavy, ultra-viscous, bituminous, metal-bearing oils and oil-bearing sandstones. NefteGazoKhimiya. 2019. No. 1. pp. 19–24.
36. Pisarev D. I. Classical and modern methods of mass-spectrometry. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Ser.: Meditsina. Farmatsiya. 2012. No. 10-2(129). pp. 5–11.

Full content Multiplicative method to assess fire and explosion hazard of mine air containing hydrocarbon gases