Journals →  Gornyi Zhurnal →  2023 →  #9 →  Back

ArticleName Approaches to numerical modeling of dynamic rock fracture in drilling and blasting
DOI 10.17580/gzh.2023.09.03
ArticleAuthor Zatsepin M. A., Gospodarikov A. P.

Empress Catherine II Saint Petersburg Mining University, Saint-Petersburg, Russia:

M. A. Zatsepin, Associate Professor, Candidate of Physical and Mathematical Sciences,
A. P. Gospodarikov, Head of Department, Professor, Doctor of Engineering Sciences


Improvement of safety of underground structures in areas exposed to seismic loading is an urgent task. The solution of this problem, firstly, requires the adequate mathematical models of dynamic fracture of rock mass containing underground structures, and secondly, the effective numerical algorithms on the basis of such models for creating computational programs in various programming environments. At present, as a rule, the well-known software products (Ansys, Abaqus, FLAC 3D, PLAXIS 3D, etc.) are used, although their application due to the specificity and complexity of the research problems not always leads to reliable results. This paper considers the developed mathematical models of seismic impact exerted by drilling and blasting on underground structures (gas and oil pipelines, underground openings). The numerical modeling results allow the following inference: it is reasonable to carry out reliable prediction of the stress state of rock mass containing an underground facility on the basis of interrelated software systems. For example, the FEM-based computation in the Matlab programming environment allows obtaining approximate solutions of problems on interaction of basting-induced seismic waves with rock mass containing an operating gas pipeline. The computation in the Fortran-90 algorithmic language enables obtaining sufficiently accurate numerical solutions for engineering designs. The computation in the JavaScript programming language allows modeling the blasting-induced seismic impact on multilayer rock mass containing an extended horizontal tunnel. The developed approach to assessing the impact of seismic earthquake waves on subway tunnels in the Simulia Abaqus environment provided reliable numerical results on the stress state of subway tunnel lining, which were comparable with the in situ measurements.

keywords Mathematical model, underground opening, pipeline, dynamic rock fracture, drilling and blasting, blasting-induced seismic wave, computational program, programming language

1. Protosenya A. G., Alekseev A. V., Verbilo P. E. Prediction of the stress-strain state and stability of the front of tunnel face at the intersection of disturbed zones of the soil mass. Journal of Mining Institute. 2022. Vol. 254. pp. 252–260.
2. Marinin M. A., Karasev M. A., Pospehov G. B., Pomortseva A. A., Kondakova V. N. et al. Comprehensive study of filtration properties of pelletized sandy clay ores and filtration modes in the heap leaching stack. Journal of Mining Institute. 2023. Vol. 259. pp. 30–40.
3. Gospodarikov A. P., Trofimov A. V., Kirkin A. P. Evaluation of deformation characteristics of brittle rocks beyond the limit of strength in the mode of uniaxial servohydraulic loading. Journal of Mining Institute. 2022. Vol. 256. pp. 539–548.
4. Galchenko Yu. P., Eremenko V. A. Evolution of secondary stress field during underground mining of thick ore bodies. Eurasian Mining. 2021. No. 1. pp. 21–24.
5. Ekvist B. V., Barnov N. G. Explosive fragmentation of rock masses with heterogeneous structure. Gornaya promyshlennost. 2021. No. 3. pp. 135–138.
6. Shabarov A. N., Kuranov A. D. Basic development trends in mining sector in complicating geotechnical conditions. Gornyi Zhurnal. 2023. No. 5. pp. 5–10.
7. Verkholantsev A. V., Dyagilev R. A., Shulakov D. Yu., Shkurko A. V. Monitoring of earthquake loads from blasting in the Shakhtau Open Pit Mine. Journal of Mining Science. 2019. Vol. 55, No. 2. pp. 229–238.
8. Zhukova S. A., Zhuravleva O. G., Onuprienko V. S., Streshnev A. A. Seismic behavior of rock mass in mining rockburst-hazardous deposits in the Khibiny Massif. GIAB. 2022. No. 7. pp. 5–17.
9. Demenkov P. A., Komolov V. V. Study of influence of the deep pit construction on soil mass in flat and spatial formulation. GIAB. 2023. No. 6. pp. 97–110.
10. Dashko R. E., Lokhmatikov G. A. Comprehensive safety assessment of radioactive waste disposal in clayey formations (case study of St. Petersburg region). GIAB. 2022. No. 10-1. pp. 66–76.
11. Tsibaev S. S., Renev A. A., Pozolotin A. S., Mefodiev S. N. Assessment of seismic impacts on stability of openings in underground mines. GIAB. 2020. No. 2. pp. 101–111.
12. Marinin M. A., Karasev M. A., Pospekhov G. B., Pomortseva A. A., Sushkova V. I. Engineering and geological parameters for heap leaching of gold from low-grade sandy clay ores: a feasibility study. GIAB. 2023. No. 9. pp. 22–37.
13. Kazanin O. I., Ilinets A. A. Ensuring the excavation workings stability when developing excavation sites of flat-lying coal seams by three workings. Journal of Mining Institute. 2022. Vol. 253. pp. 41–48.
14. Litvinenko V. S., Dvoynikov M. V., Trushko V. L. Elaboration of a conceptual solution for the development of the Arctic shelf from seasonally flooded coastal areas. International Journal of Mining Science and Technology. 2022. Vol. 32, Iss. 1. pp. 113–119.
15. Kotikov D. A., Shabarov A. N., Tsirel S. V. Connecting seismic event distribution and tectonic structure of rock mass. Gornyi Zhurnal. 2020. No. 1. pp. 28–32.
16. Galchenko Yu. P., Eremenko V. A., Kosyreva M. A., Vysotin N. G. Features of secondary stress field formation under anthropogenic change in subsoil during underground mineral mining. Eurasian Mining. 2020. No. 1. pp. 9–13.
17. Protosenya A. G., Belyakov N. A., Bouslova M. A. Modelling of the stress-strain state of block rock mass of ore deposits during development by caving mining systems. Journal of Mining Institute. 2023. Vol. 262. pp. 619–627.
18. Han Liang, Li Hongjiang, Liu Dianshu, Ling Tianlong, Li Chen et al. Probability analysis for influence of time-delay error of detonators on superposed seismic wave vibration reduction. Journal of Vibration and Shock. 2019. Vol. 38, No. 3. pp. 96–101.
19. Vennes I., Mitri H., C hinnasane D. R., Yao M. Large-scale destress blasting for seismicity control in hard rock mines: A case study. International Journal of Mining Science and Technology. 2020. Vol. 30, Iss. 2. pp. 141–149.
20. Jian-po Liu, Shi-da Xu, Yuan-hui Li, Gang Lei. Analysis of rock mass stability based on mining-induced seismicity: A case study at the Hongtoushan Copper Mine in China. Rock Mechanics and Rock Engineering. 2019. Vol. 52, No. 1. pp. 265–276.
21. Etkin M. B., Azarkovich A. E. Blasting in Power Generation and Industrial Engineering : Theoretical and Practical Guidance. Moscow : Izdatelstvo Moscovskogo gosudarstvennogo gornogo universiteta, 2004. 317 p.
22. Sidorov D. V., Potapchuk M. I., Sidlyar A. V., Kursakin G. A. Assessment of rock-burst hazard in deep layer mining at Nikolayevskoye Field. Journal of Mining Institute. 2019. Vol. 238. pp. 392–398.
23. Komatitsch D., Tromp J. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation. Geophysical Journal International. 2003. Vol. 154, Iss. 1. pp. 146–153.
24. Love A. E. H. A Treatise on the Mathematical Theory of Elasticity. 4th ed. New York : Dover Publications, 1944. 643 с.
25. Grigoryan S. S. To solution of the task of underground explosion in soft soils. Applied Mathematics and Mechanics. 1964. Vol. 28(2). pp. 1070–1075.
26. Grigoryan S. S. An approximate solution of the problem of the penetration of a body into soil. Fluid Dynamics. 1993. Vol. 28, Iss. 4. pp. 444–449.
27. Kucukcoban S., Kallivokas L. F. Mixed perfectly-matched-layers for direct transient analysis in 2D elastic heterogeneous media. Computer Methods in Applied Mechanics and Engineering. 2011. Vol. 200, No. 1-4. pp. 57–76.
28. Sadovsky M. A. Geophysics and physics of explosion: Selectals. Moscow : Nauka, 2004. 439 p.
29. Ilyushin A.A., Rashidov T. On the action of a seismic wave on underground pipelines. Izvestiya Akademii nauk Uzbekskoy SSR. Seriya tekhnicheskikh nauk. 1971. No. 1. pp. 38–42.
30. Etkin M. B., Azarkovich A. E. Blastings in energetic and industrial construction. Moscow : Izdatelstvo MGGU, 2004. 317 p.
31. Vallander S. V. Lectures on hydroaeromechanics. Saint-Petersburg : Izdatelstvo SPbGU, 2005. 304 p.
32. Novozhilov V. V., Chernykh K. F., Mikhaylovskiy E. I. Linear theory of thin shells. Leningrad : Politekhnika, 1991. 656 p.
33. Novozhilov V. V. Theory of elasticity. Leningrad : Sudpromgiz, 1958. 370 p.
34. Samarskiy A. A. The theory of difference schemes. Moscow : Nauka, 1989. 616. p.
35. Godunov S. K. Equations of mathematical physics. 2nd revised and enlarged edition. Moscow : Nauka, 1979 . 3 92 p.
36. Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Krayko A. N., Prokopov G. P. Numerical solution of multidimensional problems of gas dynamics. Moscow : Nauka, 1976. 400 p.
37. Sedov L. I. Continuum mechanics. 2nd revised a nd enlarged edition. Moscow : Nauka, 1970. Vol. 2. 568 p.
38. Vykhodtsev Ya. N. Visualization of seismic-blast waves exposure to the rock mass surrounding the excavation. Present-Day Educational Technologies in Natural and Humanitarian Sciences : IV International Conference Proceedings. Saint-Petersburg : Sankt-Peterburgskiy gornyi universitet, 2017. pp. 300–305.

Full content Approaches to numerical modeling of dynamic rock fracture in drilling and blasting