Journals →  Tsvetnye Metally →  2023 →  #8 →  Back

Marking the 250th anniversary of the Empress Catherine II St Petersburg Mining University and the 20th anniversary of the Nanophysics & Nanomaterials International Conference
ArticleName Carbon materials surface modified with transition metal ions
DOI 10.17580/tsm.2023.08.10
ArticleAuthor Denisova O. V., Karapetyan K. G.

Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russia:

O. V. Denisova, Associate Professor at the Department of Electronic Systems, Candidate of Chemical Sciences, e-mail:
K. G. Karapetyan, Head of the Department of Chemical Technology and Energy Processing, Doctor of Technical Sciences, e-mail:


The non-ferrous metals industry heavily relies on pyrometallurgical processes conducted at high temperatures and in harsh environments, which sets special requirements to the materials and coatings used. Carbon materials (including composites) are widely used in furnace processes as they determine the physicochemical properties of refractory coatings that make the furnace lining. Special attention is given to the use of graphite- and carbon-based composite materials, as well as carbon-carbon composites. At the same time, a great deal of attention is given to surface control and the possibility to control the surface activity. Thanks to controlled changes of the surface chemical composition, better composites can be selected for making catalysts and special additives, as well as for coatings. This paper looks at the compositions of surface functional groups of graphite and carbon. The authors used the method of atomic layer deposition from gaseous phase to produce graphite-based surface-modified composites by building surface multi-layer coatings containing ions of aluminium, titanium and zirconium. Relationships have been established between the electrokinetic and adsorption potential and the number of atomic layer deposition cycles. The authors also determined the energy-based distribution of active adsorption centres for both initial and synthesized specimens. It is demonstrated that the surface activity of composite materials is governed by the chemical composition and the surface condition of carbon materials, and this relationship can be used to predict the physico-chemical properties of carbon composites.

keywords Graphite, carbon, doping with aluminium, titanium, zirconium, surface functional groups, single-layer coatings, composites

1. Malaki M., Xu W., Kasar A. K. et al. Advanced metal matrix nanocomposites. Metals. 2019. Vol. 9, Iss. 3. p. 330. DOI: 10.3390/met9030330
2. Wang W., Yi D., Hua W., Wang B. High damping capacity of Al – 40 Zn alloys with fine grain and eutectoid structures via Yb alloying. Journal of Alloys and Compounds. 2021. Vol. 870. p. 159485.

3. New Materials. Preparation, properties and applications in the aspect of nanotechnology. New York : Nova Science Publishers, 2020. 249 p.
4. Applied Aspects of Nano-Physics and Nanoingineering. New York : Nova Science Publishers, 2019. 308 p.
5. Bukovskiy P. O., Morozov A. V., Kirichenko A. N. Relationship between break-in and friction coefficient of carbon composites in aircraft brakes. Trenie i iznos. 2020. Vol. 41, No. 4. pp. 448–456. DOI: 10.32864/0202-4977-2020-41-4-448-456
6. Shulaev N. S., Pryanichnikova V. V., Kadyrov R. R. Electrochemical purification of oil-contaminated soils. Journal of Mining Institute. 2021. Vol. 252. pp. 937–946. DOI: 10.31897/PMI.2021.6.15
7. Kosov Y. I., Bazhin V. Y., Kopylova T. N. Effect of the technological parameters of the aluminothermic reduction of erbium oxide in chloride – fluoride melts on the transition of erbium to a master alloy. Russian Metallurgy (Metally). 2019. Vol. 2019, Iss. 9. pp. 856–862. DOI: 10.1134/S0036029519090040
8. Milyuts V. G., Tsukanov V. V., Pryakhin E. I., Nikitina L. B. Development of manufacturing technology for high-strength hull steel reducing production cycle and providing high-quality sheets. Journal of Mining Institute. 2019. Vol. 239. pp. 536–543. DOI: 10.31897/PMI.2019.5.536
9. Roshchin M. N., Mishanova V. G. Performance of friction assemblies with carbon materials in spacecrafts in the Venus atmosphere. Journal of Advanced Research In Technical Science. 2020. Iss. 21. pp. 15–18. DOI: 10.26160/2474-5901-2020-21-15-18
10. Prosuntsov P. V., Barinov D. Ya. Analysis of combined radiation and conductive heat exchange during decomposition of porous carbon-ceramic composite of the thermal shield. BMSTU Journal of Mechanical Engineering. 2020. No. 12 (729). pp. 62–72. DOI: 10.18698/0536-1044-2020-12-62-72
11. Farberova E. A., Katysheva A. Yu., Smirnov S. A. et al. Understanding the applicability of a chemical method for recovering fine-dispersed metal particles to produce anti-bacterial sorbents. Izvestiya vysshikh uchebnykh zavedeniy. Seriya: Khimiya i khimicheskaya tekhnologiya. 2020. Vol. 63, No. 3. pp. 46–53. DOI: 10.6060/ivkkt.20206303.6047
12. Feshchenko R. Yu., Eremin R. N., Erokhina O. O., Povarov V. G. Improvement of oxidation resistance of graphite blocks for the electrolytic production of magnesium by impregnation with phosphate solutions. Part 2. Tsvetnye Metally. 2022. No. 1. P. 24–29.
13. Ponomareva M. A., Cheremisina O. V., Mashukova Yu. A., Lukiantseva E. S. Enhanced recovery of REMs from process solutions during apatite ore processing. Journal of Mining Institute. 2021. Vol. 252. pp. 917–926. DOI: 10.31897/PMI.2021.6.13
14. Cheremisina O. V., Cheremisina E. A., Ponomareva M. A., Fedorov A. T. Sorption of coordination compounds of rare earth elements. Journal of Mining Institute. 2020. Vol. 244. pp. 474–481. DOI: 10.31897/ PMI.2020.4.10
15. Smerdov R., Spivak Y., Bizyaev I., Somov P., Gerasimov V. et al. Advances in novel low-macroscopic field emission electrode design based on fullerenedoped porous silicon. Electronics. 2021. Vol. 10. 42. DOI: 10.3390/electronics10010042
16. Popova A. N., Klimenkov B. D., Grabovskiy A. Yu. Scientific school for plasma nanotechnology and energy at the Mining University. Izvestiya VUZ. Applied Nonlinear Dynamics. 2021. Vol. 29. No. 2. P. 317–336. DOI: 10.18500/0869-6632-2021-29-2-317-336
17. Reshetilov A. N. Advanced techniques in the creation of microbial biosensors and biofuel elements. Istoriya nauki i tekhniki. 2020. No. 6. pp. 15–23. DOI: 10.25791/intstg.06.2020.1187
18. Potapov A. I., Kondratev A. V. Non-destructive testing of multilayer medium by the method of velocity of elastic waves hodograph. Journal of Mining Institute. 2020. Vol. 243. P. 348–356. DOI: 10.31897/ PMI.2020.3.348
19. Koltsov S. I., Malygin A. A., Brykalov A. V. Modern nanotechnology: Method of molecular layering for directed synthesis of sorbents used in biotechnology. Krasnodar : [N/A], 2010. pp. 162–222.
20. Syrkov A. G., Prokopchuk N. R., Vorobiev A. G., Brichkin V. N. Academician N. S. Kurnakov as the founder of physico-chemical analysis – the scientific base for the development of new metal alloys and materials. Tsvetnye Metally. 2021. No. 1. pp. 77–83.
21. Syrkov A. G., Kushchenko A. N., Silivanov M. O., Taraban V. V. Nanostructured regulation of the surface properties and hydrophobicity of nickel and iron by solid-state reduction and modifying methods. Tsvetnye Metally. 2022. No. 5. pp. 54–59.
22. Drozdov E. O., Gukova A. N., Dubrovenskiy S. D., Malygin A. A. Quantum-chemical analysis and experimental synthesis of titanium-vanadium coatings on silica surface out of TiCl4 and VOCl3 vapours. Russian Journal of General Chemistry. 2016. Vol. 86, No. 9. pp. 1551–1561. DOI: 10.1134/S003602440904219
23. Abdulagatova A. I., Maksumova A. M., Palchaeva D. K., Rabadanova M. Kh. et al. Atomic layer deposition and thermal transformations of thin aluminiumvanadium oxide films. Russian Journal of General Chemistry. 2022. Vol. 92, No. 8. pp. 1310–1324. DOI: 10.31857/S0044460X22080182
24. Malkov A. A., Kukushkina Yu. A., Sosnov E. A., Malygin A. A. Titanium oxide nanostructures synthesized by molecular layering on γ-Al2O3 surface. Neorganicheskie materialy. 2020. Vol. 56, No. 12. pp. 1303–1310. DOI: 10.31857/S0002337X2012012X
25. Malkov A. A., Sosnov E. A., Malygin A. A. Effect of temperature at different stages of molecular layering on the phase formation in titanium oxide layer on silica gel surface. Zhurnal prikladnoy khimii. 2010. Vol. 83, No. 9. pp. 1409–1418.
26. Kääriäinen T., Cameron A., Kääriäinen M.-L., Sherman A. Atomic layer deposition: princples, characteristics, and nanotechnology applications. John Wiley and Sons, 2013. 272 p.

27. Aleskovskiy V. B. Chemistry of solids. Moscow : Nauka, 1978. 254 p.
28. Aleskovskii V. B. Chemistry and technology of solids. Journal of Applied Chemistry of the USSR. 1974. Vol. 47, No. 10. pp. 2207–2217.
29. Koltsov S. I. Molecular layering reactions. Lectures. St Petersburg : SPbTI, 1992. 62 p.
30. Koltsov S. I., Malygin A. A., Brykalov A. V. Modern nanotechnology: Method of molecular layering for directed synthesis of sorbents used in biotechnology. Krasnodar : Kubanskiy agrarnyi universitet, 2010. 222 p.
31. Miikkulainen V., Leskelä M., Ritala M., Puurunen R. Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends. Journal of Applied Physics. 2013. Vol. 113. 021301. DOI: 10.1063/1.4757907
32. Malygin A. A., Malkov A. A., Sosnov E. A. Structural-dimensional effects and their application in the core-nanoshell systems synthesized by molecular layering. Izvestiya Akademii nauk. Seriya khimicheskaya. 2017. Iss. 11. pp. 1939–1962. DOI: 10.1007/s11172-017-1971-9
33. Vezo O. S., Voytylov A. V., Voytylov V. V. et al. Polarizability and electrosurface properties of colloid particles of graphite in aqueous KCl solutions. Kolloidnyy Zhurnal. 2020. Vol. 82, No. 4. pp. 400–407. DOI: 10.31857/S0023291220040163
34. Kuzmina E. V., Dmitrieva L. R., Karaseva E. V. On the applicability of colouring agent sorption technique for determining the specific surface area of carbon materials for lithium-sulphur batteries. Proceedings of the RAS Ufa Scientific Centre. 2020. No. 2. pp. 29–34. DOI: 10.31040/2222-8349-2020-0-2-29-34
35. Litvinova T. E., Kashurin R., Lutskiy D. Complex formation of rare-earth elements in carbonate–alkaline media. Materials. 2023. Vol. 16. P. 3140. DOI: 10.3390/ma16083140

Full content Carbon materials surface modified with transition metal ions