Journals →  Tsvetnye Metally →  2023 →  #8 →  Back

Marking the 250th anniversary of the Empress Catherine II St Petersburg Mining University and the 20th anniversary of the Nanophysics & Nanomaterials International Conference
ArticleName Mechanical properties of epoxy coatings on metal enhanced with nanoparticles of different nature
DOI 10.17580/tsm.2023.08.04
ArticleAuthor Prokopchuk N. R., Syrkov A. G., Klyuev A. Yu., Laptik I. O.

Belarusian State Technological University, Minsk, Belarus:

N. R. Prokopchuk, Professor at the Department of Polymer Composite Materials, Doctor of Chemical Sciences, Associate Member of the National Academy of Siense Belarus, e-mail:

A. Yu. Klyuev, Professor at the Department of Woodworking Production, Doctor of Technical Sciences, e-mail:
I. O. Laptik, Engineer at the Department of Polymer Composite Materials, e-mail:


Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russia:
A. G. Syrkov, Professor at the Department of General and Technical Physics, Doctor of Technical Sciences, e-mail:


Non-toxic epoxides have been developed for metal protection on the basis of ED-20 resin and a new hardener – rosin-terpene-styrene-maleic adduct (KTSMA), obtained from renewable plant materials. DEG-1 plasticizer in the amount of 7% of the resin weight was introduced into the resin-hardener composition to raise the resistance of cured resin to impact loads. The KTSMA hardener contains functional anhydride and carboxyl groups, which should interact with epoxide and hydroxyl groups of the epoxy resin to form a spatial cross-linked coating structure. ED-20-based steel coatings cured with toxic tetraethylenepentamine (TEPA) have slightly better physical and mechanical properties compared with coatings cured with KTSMA. Thus, the former have higher hardness – 0.30 rel. units vs. 0.20 rel. units, and better adhesion – 3 points versus 4 points. This may be due to a much larger volume of KTSMA molecules compared with TEPA molecules, which reduces the density of the cross-linked spatial structure of the coatings. To raise the resistance to mechanical impacts and chemically aggressive environments, the coatings were modified with nanoparticles of various nature, including oxides of non-ferrous metals (TiO2 and ZnO). It was established that through nanomodification of the developed compositions with TiO2 and ZnO nanoparticles and impact-resistant diamonds (UDA SP, ShA-A) in ultra-small amounts (0.005; 0.010; 0.020 % wt.), one can achieve a significant improvement in the performance of anti-corrosion coatings. The authors hypothesize that a supramolecular structure is created in the developed coatings, which looks like interpenetrating networks. Functional polar groups and their uncompensated electric charge are present on the surface of nanoparticles, which actively interact with oligomeric molecules of the epoxy resin through its functional epoxide and hydroxyl groups forming a spatial system of physical bonds, additional to the chemical bonds of the KTSMA hardener with epoxy resin molecules. The physical bonding between the functional groups of epoxy resins and nanoparticles was proved by a rising dynamic viscosity on a Brookfield DV-II + Pro ES-DEG-1 rotary viscometer resulting from the introduction of the studied nanoparticles into the epoxy resin. The increase in viscosity is significant: from 15 to 25–29 mPa·s.

keywords Metal surface, epoxy coatings, hardener, plasticizer, ZnO, TiO2 nanoparticles, adhesion, impact strength, metal protection

1. Sizyakov V. M., Polyakov P. V., Bazhin V. Yu. Production of aluminium and its alloys: Current trends and strategic tasks. Tsvetnye Metally. 2022. No. 7. pp. 16–23.
2. Kovalskaya K. V., Gorlanov E. S. Al – Ti – B master alloys: structure formation in modified alloys. Tsvetnye Metally. 2022. No. 7. pp. 57–64.
3. Zhilina E. M., Krasikov S. A., Kuznetsov I. V., Kalenova M. Yu. Separation of ultrafine uranium oxide particles from zirconium alloys in remelting process with fluoride and oxide slags: thermodynamic analysis. Tsvetnye Metally. 2022. No. 7. pp. 73–76.
4. Glaziev M. V., Bazhin V. Yu. Refractory materials combined with industrial waste for metallurgical machinery. Novye ogneupory. 2020. No. 11. pp. 21–26.
5. Litvinova T. E., Kashurin R., Lutskiy D. Complex formation of rare-earth elements in carbonate–alkaline media. Materials. 2023. Vol. 16. P. 3140. DOI: 10.3390/ma16083140
6. Baake E., Shpenst V. A. Recent scientific studies on electrothermal metallurgical processes. Journal of Mining Institute. 2019. Vol. 240. pp. 660–668.
7. Bazhin V. Y., Aryshenskii E., Hirsch J., Kawalla R. et al. Impact of Zener-Hollomon parameter on substructure and texture evolution during thermomechanical treatment of iron-containing wrought aluminium alloys. Transactions of Nonferrous Metals Society of China. 2019. Vol. 29, Iss.5. P. 893–906. DOI: 10.1016/S1003-6326(19)64999-X
8. Cheremisina E., Cheremisina O., Ponomareva M., Bolotov V., Fedorov A. Kinetic Features of the hydrogen sulfide sorption on the ferro-manganese material. Metals. 2021. Vol. 11. P. 90. DOI: 10.3390/met11010090
9. Lutskiy D. S., Ignatovich A. S. Understanding the hydrometallurgical recovery of copper and rhenium when processing off-grade copper concentrates. Journal of Mining Institute. 2021. Vol. 251. P. 723–729. DOI: 10.31897/PMI.2021.5.11
10. Grebier S., Prenner S., Kurz A., Resch S., Pavisek A. et al. Polymer nanocomposites – additives, properties, applications, environmental aspects. NanoTrust dossier. 2020. No. 58. pp. 1–6.
11. Pruna A. Nanotechnology in eco-efficient construction materials. Processes and applications. Woodhead Publishing Series in Civil and Structural Engineering. 2019. pp. 337–359.
12. Ganzulenko O. U., Maskova M. S., Ivantsova N. Yu. The practice of using nanocoatings in various industries. Proceedings of the Nanophysics & Nanomaterials International Conference. 23–24 November 2022, Saint Petersburg. 2022. pp. 87–92.
13. Yachmenova L. A., Silivanov M. O., Kushchenko A. N. V. B. Aleskov skiy’s ideas elaborated by the Mining University’s science schools in the field of nanotechnology. Proceedings of the Nanophysics & Nanomaterials International Conference. 23–24 November 2022, Saint Petersburg. 2022. pp. 361–366.
14. New materials: preparation, properties and applications in the aspect of nanotechnology. New York : Nova Science Publishers, Inc., 2020. 249 p.
15. Applied aspects of nanophysics and nanoengineering. New York : Nova Science Publishers, Inc., 2019. 308 p.
16. Pomogaylo A. D., Rozenberg A. S., Uflyand N. E. Nanoparticles of metals in polymers. Moscow : Khimiya, 2000. 401 p.
17. Margolin V. I., Potapov A. A., Farmakovskiy B. F., Kuznetsov P. A. Developing nanocomposite-based nanotechnologies. St Petersburg : Izdatelstvo SPbGETU “LETI”, 2016. 190 p.
18. Liopo V., Avdejchik S., Struk V. et al. Nanocomposite materials based on thermoplastic blends for the technological equipment with a long service life. Machines. Technologies. Materials. 2018. Vol. 12, No. 12. pp. 341–343.
19. Kantyukov R. R., Zapevalov D. N., Vaganov R. K. Analyzing the use and effect of carbon dioxide environments on the corrosion condition at oil and gas sites. Journal of Mining Institute. 2021. Vol. 250. pp. 578–586.
20. Alkhimova V. A., Sharapova D. M. Corrosion and protection of production tubing in oil and gas industry. Proceedings of the Nanophysics & Nanomaterials International Conference. 23–24 November 2022, Saint Petersburg. 2022. pp. 20–26.
21. Konchus D. A., Sivenkov A. V. A surface structure formation of stainless steel using a laser. Materials Science Forum. 2021. Vol. 1022. pp. 112–118.
22. Pozhidaeva S. D., Ageeva L. S., Ivanov A. M. Zinc oxidized with the help of acids at room temperatures: A comparative analysis. Journal of Mining Institute. 2019. Vol. 235. pp. 38–46.
23. Zhao Y., Xu J. B., Hu J. M. et al. Electrodeposited superhydrophobic silica films coembedded with template and corrosion inhibitor for active corrosion protection. Applied Surface Science. 2020. Vol. 508. 145242.
24. Cueli Corugedo A., Latypov O. R., Latypova D. R., Montero Adames Y. Protecciоn de la tuber a principal contra la corrosiоn en reas complejas. Ingenier a Mecanica. 2019. Vol. 22, No. 1. pp. 74–78.
25. Syzrantsev V. V. Analysis of variation in the properties of the surface of SiO2 and Al2O3 nanoparticles obtained by different methods. Condensed Matter and Interphases. 2022. Vol. 24, No. 3. pp. 369–378.
26. Syzrantsev V. V. Variation of properties of cured epoxy resin with nanoparticles synthesized by various techniques. Proceedings of the Nanophysics & Nanomaterials International Conference. 23–24 November 2022, Saint Petersburg. 2022. pp. 280–285.
27. Lee H., Neville K. Epoxy resins. Encyclopedia of polymers. Vol. 3. Moscow : Izdatelstvo “Sovetskaya entsiklopedia”, 1971. pp. 992–1001.
28. Long He, Liu Lei, Cao Chang, Jiang Feng, Xu Jun. Improved curing performances of epoxy resin by a structure-controllable self-emulsifying curing agent. Journal of Adhesion Science and Technology. 2022. Vol. 36. pp. 490–506.
29. Kitichatpayak D., Makcharoen W., Vittayakorn N., Vittayakorn W. Influence of various nanofillers on mechanical and electrical properties of epoxy resin composites. Polymer-Plastics Technology and Materials. 2022. Vol. 61. pp. 1826–1832.
30. Osipchik V. S., Khlaing Zo U, Kostromina N. V., Kravchenko T. P. et al. Developing corrosion-resistant materials using ED-20 epoxy resin modified with viniflex. Klei. Germetiki. Tekhnologii. 2020. No. 10. pp. 38–41.
31. Musa A., Alamry K., Hussein M. Polybenzoxazine-modified epoxy resin: thermal properties and coating performance. International Journal of Polymer Analysis and Characterization. 2021. Vol. 26. pp. 189–203.
32. Firas Jameel Jabbar. Study the thermal properties of epoxy resin reinforced with calcium oxide fibers. Smart Science. 2021. Vol. 9. pp. 61–69.
33. Bormotova A. N. Optimization of the polymer matrix of epoxy composites. Mezhdunarodnyy nauchno-issledovatelskiy zhurnal. 2022. No. 1. pp. 28–33.
34. Putilina P. M., Pigareva V. A., Gorbatkina Yu. A., Gorbunova I. Yu. et al. Effect of repeated curing cycles on the mechanical characteristics of epoxy matrix and its adhesion to fibers. Klei. Germetiki. Tekhnologii. 2021. No. 11. pp. 12–19.
35. Svistkov A. L., Eliseeva A. Yu., Kondyurin A. V. Mathematical model of the curing reaction of ED-20 resin with TEAT-1 curing compound. Bulletin of Perm University. Physics. 2019. Vol. 1. pp. 9–16.
36. Ou Baoli, Wang Yuwei, Lu Yi. A review on fundamentals and strategy of epoxy-resin-based anticorrosive coating materials. Polymer-Plastics Technology and Materials. 2021. Vol. 60. pp. 601–625.
37. Merad L., Bouchaour M., Abbadie M. J., Benyoucef B. Preparation and mechanical characterization of TiO2/epoxy resin nanocomposites through differential scanning calorimetry and Raman spectroscopy. Zhurnal Prikladnoii Spektroskopii. 2019. Vol. 86, No. 1. pp. 78–83.
38. Radbil A. B., Klyuev A. Yu., Prokopchuk N. R. Elaborating the theoretical and practical basis for deep and comprehensive processing of Pinus Silvestris L. Minsk : Konfido, 2021. 77 p.
39. TU RB 100056180.003–2003. Diamond blend ShA-A. Introduced: 03.02.2004.
40. TU RB 28619110.001–95. Ultra-dispersed detonation diamonds. Introduced: 23.10.1995.
41. Prokopchuk N. R., Globa A. I., Laptik I. O., Syrkov A. G. The properties of metal coatings enhanced with diamond nanoparticles. Tsvetnye Metally. 2021. No. 6. pp. 55–58.
42. GOST 8832–76. Paintwork materials. Methods for formation of paint coating for testing. Introduced: 01.01.1977.
43. ISO 1522–73. Paints and varnishes – Pendulum damping test. Published: 01.12.1973.
44. GOST 5233–89. Paint materials. Method for determination of coating hardness with pendulum instrument. Introduced: 01.01.1990.
45. GOST 4765–73. Paint and lacquer materials. Method for determination of impact resistance. Introduced: 01.07.1974.
46. GOST 15140–78. Paintwork materials. Methods for determination of adhesion. Introduced: 01.01.1979.

Language of full-text russian
Full content Buy