Journals →  Tsvetnye Metally →  2023 →  #8 →  Back

Marking the 250th anniversary of the Empress Catherine II St Petersburg Mining University and the 20th anniversary of the Nanophysics & Nanomaterials International Conference
ArticleName Features of colour ultradense multidimensional nanobarcodes created on the surface of items made of non-ferrous metals and their alloys
DOI 10.17580/tsm.2023.08.03
ArticleAuthor Petkova A. P., Ganzulenko O. Yu.

Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russia:

A. P. Petkova, Professor at the Department of Materials Science and Technology of Art Products, Doctor of Technical Sciences, e-mail:
O. Yu. Ganzulenko, Associate Professor at the Department of Materials Science and Technology of Art Products, Candidate of Technical Sciences, e-mail:


The authors of this paper developed an original method to create colour matrix codes aimed at counterfeit protection of items, preventing unauthorized use of information, verifying the authenticity of items, ensuring their clear identification, increasing the ID capacity (text, graphical, audio and video information and other digital data) approximately by 5 times and creating a machine-readable template image of such ID. The proposed colour code helps transform the known black-and-white nanobarcode into a multi-dimensional colour code applied to a two-dimensional matrix or increase the nanobarcode capacity by several times. Multi-dimensional colour matrix codes enable to increase the amount of data contained in the colour code due to the use of a graphical two-dimensional matrix to which all layers of binary-coded data are applied. It is possible to create digital codes and apply codes to metal surface by printing or laser marking. Definition of reference colour cells ensures that the code will be read and decoded even if the technical characteristics of printers and scanners differ. The obtained colour palettes and databases of laser marking regimes applicable to titanium, copper and aluminium alloys ensure reproducibility of the main colours for all the mentioned materials. Through the use of four or eight colours in the colour matrix code instead of merely black and white in the two-dimensional one, the code capacity can be increased to two or three bits of information depending on the number of colour layers. By making use of four or eight stable colours, including the background colour, one can create two- and three-layer colour matrix codes on the surface of each of the above listed materials.
Candidate of Technical Sciences E. V. Larionova took an active part in the work, who formulated the principles of creating a 3-dimensional color nanobarkode.

keywords Laser marking, barcode, nanobarcode, colour matrix code, counterfeit protection

1. ISO/IEC 18004. Information technology. Automatic identification and data capture techniques QR Code – Bar code symbology. First edition 2000-06-15. 114 р.
2. Carroll O., Tanguy Y., Houlihan J., Huyet G. Dynamics of a self-pulsing laser with delay. Proceedings of SPIE. The International Society for Optical Engineering. 2004. Vol. 77. pp. 628–635.
3. Valiulin A., Gornyi S., Grechko Yu., Patrov M., Yudin K. et al. Laser marking of materials. Photonics Russia. 2007. No. 3. pp. 16–22.
4. Odintsova G., Andreeva Y., Salminen A., Roozbahani H., Van Cuong L. et al. Investigation of production related impact on the optical properties of color laser marking. Journal of Materials Processing Technology. 2019. Vol. 274. p. 116263. DOI: 10.1016/j/jmatprotec.2019.116263
5. Pryakhin E. I. Nanobarcode as a universal two-dimensional ID offering new opportunities. Journal of Mining Institute. 2015. Vol. 215. pp. 97–100.
6. Pryakhin E. I., Larionova E. V., Zakharenko E. A. Nanobarcode as a multifunctional product identification and protection system. Photonics Russia. 2014. Vol. 48, No. 6. pp. 12–19.
7. Pryakhin E. I., Larionova E. V., Zakharenko E. A. Method of digital information in the form of ultra-compressed nano bar code encoding and decoding (options). Patent RF, No. 2656734. Applied: 27.12.2013. Published: 06.06.2018. Bulletin No. 16.
8. Petkova A. P., Ganzulenko O. Yu. Laser marking of non-ferrous metal and alloy products using ultradense barcodes: process features. Tsvetnye Metally. 2022. No. 7. pp. 92–97.
9. Gornyi S., Veyko V., Odintsova G., Loginov A., Karlagina Yu. et al. Colour laser marking of metal surface. Photonics Russia. 2013. Vol. 42, No. 6. pp. 34–45.
10. Veyko V. P., Gornyi S. G., Odintsova G. V., Patrov M. I., Yudin K. V. Multi-colour images created on metal surface during its laser oxidation. Journal of Instrument Engineering. 2011. Vol. 54, No. 2. pp. 47–52.
11. Konchus D. A., Pryakhin E. I., Sivenkov A. V. Structural variations on the surface of metallic products at laser marking. CIS Iron and Steel Review. 2021. Vol. 22. pp. 96–101.
12. Konchus D., Salpagarov E., Sivenkov A. Temperature influence on readability of the QR-code on titanium alloy. Key Engineering Materials. 2022. No. 909. pp. 54–59. DOI: 10.4028/p-4hhoi9
13. Pritotskiy E. M., Pritotskaya A. P., Burtseva A. A., Pankova M. A. et al. Experimental res earch on chromaticity formation on metals surface by laser radiation. Scientific and Technical Journal of Informat ion Technologies, Mechanics and Optics. 2018. Vol. 18, No. 4. pp. 581–587.
14. Pryakhin E. I., Troshina E. Yu. Degradation induced by thermal and chemical impacts on matrix codes installed on brass and aluminium alloy parts by laser. Tsvetnye Metally. 2022. No. 7. pp. 87–91.
15. Veiko V., Karlagina Y. Y., Moskvin M., Mikhailovskii V. Y., Odintsova G. et al. Metal surface coloration by oxide periodic structures formed with nanosecond laser pulses. Optics and Lasers in Engineering. 2017. Vol. 96. pp. 63–67.
16. Pryakhin E. I., Larionova E. V., Zakharenko E. A. Creation and testing of hardware and software package for applying information fields to product surface. Journal of Mining Institute. 2014. Vol. 209. pp. 234–238.
17. Rasskazchikov N. G., Polyakova A. A. A study of the laser marking process and its optimization. Russian Internet Journal of Industrial Engineering. 2019. Vol. 7, No. 1. pp. 9–13. DOI: 10.24892/RIJIE/20190102
18. Odintsova G. V. Understanding and developing the process of colour laser marking of metals by local oxidation: Extended abstract of PhD dissertation. St Petersburg : Sankt-Peterburgskiy natsionalnyi issledovatelskiy universitet informatsionnykh tekhnologiy, mekhaniki i optiki, 2014. 20 p.
19. Ageev E. I., Veiko V. P., Vlasova E. A., Karlagina Y. Y., Krivonosov A. S. et al. Controlled nanostructures formation on stainless steel by short laser pulses for products protection against falsification. Optics Express. 2018. Vol. 26, Iss. 2. pp. 2117–2122.
20. Morozova I. G., Naumova M. G., Zarapin A. Yu., Borisov P. V. Marking a copper alloy by changing its surface topology under the impact of laser thermal processing. Metallurg. 2018. No. 5. pp. 56–60.
21. Xiaolei M., Xihan N., Jingnan Z., Pranav S., Yan Z. Effect of nanosecond pulsed laser parameters on the color marking of 304 stainless steel. Optics and Laser Technology. 2020. Vol. 126. p. 106104. DOI: 10.1016/j.optlastec.2020.106104
22. Gorny S. G., Zakharenko E. A., Klassen N., Kolobov Y. R., Ligachev A. et al. Laser formation and influence of laser radiation on basic characteristics of barcodes. Inorganic Materials: Applied Research. 2022. Vol. 13. pp. 879–886.

23. Antonov D. N., Burtsev A. A., Butkovskiy O. Ya. Metal surface coloration under the impact of pulsed laser radiation. Technical Physics. 2014. Vol. 84, No. 10. pp. 83–86.
24. Amiaga John V., Ramos-Velazquez A. R., Gorny S. G., Vologzhanina S. A., Michtchenko A. Groove formation on metal substrates by nanosecond laser removal of melted material. Metals (MDPI). 2021. No. 11. pp. 1–14. DOI: 10.3390/met11122026
25. Veiko V. P., Odintsova G. V., Gazizova M. Y., Karlagina Y. Y., Manokhin S. S. et al. The influence of laser micro- and nanostructuring on the wear resistance of Grade-2 titanium surface. Laser Physics. 2018. Vol. 28, No. 8. p. 086002.
26. Konchus D. A., Sivenkov A. V. A surface structure formation of stainless steel using a laser. Materials Science Forum. 2021. No. 1022. pp. 112–118. DOI: 10.4028/
27. Chang C.-L., Cheng C.-W., Chen J.-K. Femtosecond laser-induced periodic surface structures of copper: Experimental and modeling comparison. Applied Surface Science. 2019. Vol. 469. pp. 904–910. DOI: 10.1016/j.apsusc.2018.11.059
28. Alekseev V. I., Barakhtin B. K., Zhukov A. S. Chemical inhomogeneity as a factor of raising the strength of selective laser melted steels. Journal of Mining Institute. 2020. No. 242. pp. 191–196. DOI: 10.31897/pmi.2020.2.191
29. Salpagarov E. M., Belyakov A. A., Sivenkov A. V. Improvement of mechanical properties of the tool using nanocomposite coatings. Materials Science Forum. 2021. No. 1040. pp. 68–74. DOI: 10.4028/
30. Tomaev V. V., Polischuk V. A., Vartanyan T. A., Mjakin S. V., Leonov N. B. et al. Studies of zinc and zinc oxide nanofilms of different thickness prepared by magnetron sputtering and thermal oxidation. Optics and Spectroscopy. 2021. No. 129. pp. 1033–1037. DOI: 10.1134/S0030400X21070201
31. Amiaga J. V., Gorny S. G., Vologzhanina S. А. Development of a fast method for forming Braille on the surface of steels with IR nanosecond pulsed 50W fiber laser. AIP Conference Proceedings. 2020. Vol. 2285. p. 040003.
32. Amiaga J. V., Gorny S. G., Vologzhanina S. А. Method of convex marking of the surfaces of steel products using a pulsed 50-W infrared fiber laser. Metally. 2020. No. 13. pp. 1513–1517.
33. Stepan ov S. N., Larionova T. A., Stepanov S. S. Understanding the effect of aluminium on the adhesion of stainless steel during flame spraying. Journal of Mining Institute. 2020. No. 245. pp. 591–598. DOI: 10.31897/PMI.2020.5.11
34. Morozova I. G., Naumova M. G, Zarapin A. Y., Borisov P. V. Copper alloy marking by altering its surface topology using laser heat treatment. Metallurgist. 2018. No. 62. pp. 464–469.
35. Olt Yu., Maksarov V. V., Krasnyi V. A. Understanding the wear resistance of mine dump truck engine bearings subjected to fretting corrosion. Journal of Mining Institute. 2019. No. 235. pp. 70–77. DOI: 10.31897/pmi.2019.1.70
36. Gorbatuk S. M., Naumova M. G. Morozova I. G. Color mark formation on a metal surface by a highly concentrated energy source. Metallurgist. 2016. Vol. 60, No. 5. pp. 646–650.
37. CMYK and RGB for printing: What is the difference? Devis printing system. Available at: (Accessed: 05.07.2023).

Full content Features of colour ultradense multidimensional nanobarcodes created on the surface of items made of non-ferrous metals and their alloys