Журналы →  Gornyi Zhurnal →  2023 →  №8 →  Назад

BELARUSKALI JSC
Название Geomechanical supervision of undermined area subsidence monitoring with satellite radars
DOI 10.17580/gzh.2023.08.06
Автор Baryakh A. A., Devyatkov S. Yu., Denkevich E. T., Mikhailov V. O., Timoshkina E. P.
Информация об авторе

Mining Institute, Ural Branch, Russian Academy of Sciences, Perm, Russia:

A. A. Baryakh, Research Manage, Academician of the Russian Academy of Sciences, Doctor of Engineering Sciences, bar@mi-perm.ru
S. Yu. Devyatkov, Senior Researcher, Candidate of Engineering Sciences


Belaruskali JSC, Soligorsk, Belarus:

E. T. Denkevich, Chief Surveyor


Shmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia:

V. O. Mikhailov, Head of Laboratory, Doctor of Physical and Mathematical Sciences, Corresponding Member of the Russian Academy of Sciences
E. P. Timoshkina, Senior Researcher, Candidate of Physical and Mathematical Sciences

Реферат

The experience of radar interferometric control of the earth surface movement during longwall mining of sylvinite layers at Starobin potash deposit is considered. It is demonstrated that the subsidence readings using shots from Sentinel 1 satellite are stable during spring and autumn periods when snow or vegetation cover is absent. The research was conducted simultaneously with geomechanical modeling which was aimed at restoration of “missed” periods of radar survey. The comparison between mathematical modeling results and radar interferometer data demonstrated satisfying conformity either for individual time slot or for the whole period of surveillance. A small discrepancy at short time intervals between subsidence curve according to modeling results and radar interferometer data was levelled down in long surveillance periods. The possibility of the earth surface subsidence prediction and “restoration” at time intervals, during which the satellite survey estimation of subsidence are absent due to season causes, is illustrated. The existence of radar interferometric survey allows geomechanical model calibration with subsequent estimation and prediction of expected earth surface subsidence for the periods of satellite measurements absence. Based on the new radar interferometric information, the verification of geomechanical supervision data and, if needed, the adjustment of mathematical model of the undermined rock mass stress–strain state is fulfilled. The geomechanical modeling results together with the data of systematic radar area surveillance are used for the analysis and prediction of genesis of the earth surface movement process during extraction of sylvinyte layers by longwall mining.
The study was supported by the Russian Science Foundation, Grant No. 19-77-30008. The authors express their gratitude to the European Space Agency for the provided satellite images.

Ключевые слова Satellite radar interferometry, earth surface subsidence, surveillance, geomechanical modeling, Starobin potash deposit, longwall mining
Библиографический список

1. Rauche H. Die Kaliindustrie im 21. Jahrhundert. Stand der Technik bei der Rohstoffgewinnung und der Rohstoffaufbereitung sowie bei der Entsorgung der dabei anfallenden Rückstände. Berlin : Springer-Verlag, 2015. 580 s.
2. Baryakh А. А., Smirnov E. V., Kvitkin S. Yu., Tenison L. O. Russian potash industry: Issues of rational and safe mining. Gornaya promyshlennost. 2022. No. 1. pp. 41–50.
3. Zubov V. P., Kovalski E. R., Antonov S. V., Pachgin V. V. Improving the safety of mines in developing Verkhnekamsk potassium and magnesium salts. GIAB. 2019. No. 5. pp. 22–33.
4. Belyakov N. A., Belikov A. A. Prediction of the integrity of the water-protective stratum at the Verkhnekamskoye potash ore deposit. GIAB. 2022. No. 6-2. pp. 33–46.
5. Podlesnyi I. A., Getmanov V. N., Petrovsky B. I., Nosulya I. E. Multi-slice mining technology for potash seam III at the Starobinsk deposit. Gornyi Zhurnal. 2018. No. 8. pp. 59–64.
6. Kovalev O. V., Mozer S. P., Tkhorikov I. Yu., Leisle A. V. Substantiation of rational mining parameters for iv potash horizon of the starobin potash deposit. Journal of Mining Institute. 2011. Vol. 190. pp. 9–15.
7. Kovalev O. V., Kovalskii E. R., Sirenko Yu. G., Tkhorikov I. Yu. Development of technological schemes of the selective extraction of the complex potash seams under conditions of the starobin deposit. Journal of Mining Institute. 2011. Vol. 190. pp. 16–21.
8. Baryakh A. A., Sanfirov I. A., Fedoseev A. K., Babkin A. I., Tsayukov A. A. Seismic–Geomechanical Control of Water-Impervious Strata in Potassium Mines. Journal of Mining Science. 2017. Vol. 53, Iss. 6. pp. 981–992.
9. Nikiforov S. E. The specifics of surveying ground surface displacement in the undermined territories. Marksheyderiya i nedropolzovanie. 2012. No. 5(61). pp. 38–41.
10. van der Kooij M. W. A, Van Halsema D., Groemewoud W., Ambrosius B. A. C., Mets G. J. et al. Satellite radar measurements for land subsidence detection. Land Subsidence: Nafural Сauses, Measuring Techniques, The Groningen Gasfields : Proceedings of the 5th International Symposium. The Hague, 1995. pp. 169–177.
11. Fielding E. J., Blom R. G., Goldstein R. M. Rapid subsidence over oil fields measured by SAR interferometry. Geophysical Research Letters. 1998. Vol. 25, No. 17. pp. 3215–3218.
12. Stancliffe R. P. W., van der Kooij M. W. A. The Use of Satellite-Based Radar Interferometry to Monitor Production Activity at the Cold Lake Heavy Oil Field, Alberta, Canada. AAPG Bulletin. 2001. Vol. 85, No. 5. pp. 781–793.
13. Haibin Xu H., Dvorkin J., Nur A. Linking oil production to surface subsidence from satellite radar interferometry. Geophysical Research Letters. 2001. Vol. 28, No. 7. pp. 1307–1310.
14. Carnec С., Massonnet D., King C. Two examples of the use of SAR interferometry on displacement fields of small spatial extent. Geophysical Research Letters. 1996. Vol. 23, No. 24. pp. 3579–3582.
15. Mozer D. V., Tuyakbai A. S., Toleubekova Zh. Z. State of the undermined Karaganda Coal Basin area by satellite monitoring data. Journal of Mining Science. 2017. Vol. 53, Iss. 2. pp. 389–395.
16. Tsirel S. V., Taratinskiy G. M., Ponomarenko M. R., Kantemirov Yu. I. Earth surface deformation monitoring in the mining areas of Apatit JSC (Murmansk Region) using radar interferometry. Marksheyderskiy vestnik. 2017. No. 5(120). pp. 57–63.
17. Zhiyong Wang, Jingzhao Zhang, Yaran Yu, Jian Liu, Wei Liu et al. Monitoring, Analyzing, and Modeling for Single Subsidence Basin in Coal Mining Areas Based on SAR Interferometry with L-Band Data. Scientific Programming. 2021. Vol. 2021. ID 6662097. DOI: 10.1155/2021/6662097
18. Raucoules D., Colesanti C., Carnec C. Use of SAR interferometry for detecting and assessing ground subsidence. Comptes Rendus Géoscience. 2007. Vol. 339, Iss. 5. pp. 289–302.
19. Modeste G., Doubre C., Masson F. Time evolution of mining-related residual subsidence monitored over a 2 4-year period using InSAR in southern Alsace, France. International Journal of Applied Earth Observation and Geoinformation. 2021. Vol. 102. 102392. DOI: 10.1016/j.jag.2021.102392
20. Bush V., Hebel H.-P., Schaffer M., Valter D., Baryakh A. A. Control of underworked areas subsidence using the radar interferometry methods. Marksheyderiya i nedropolzovanie. 2009. No. 2(40). pp. 38–43.
21. Bab ayants I. P., Baryakh A. A., Volkova M. S., Mikhaylov V. O., Timoshkina E. P. et al. Monitoring of subsidence in Berezniki (Perm region) by SAR interferometry: I. Differential interferometry. Geofizicheskie issledovaniya. 2021. Vol. 22, No. 4. pp. 73–89.
22. Kashnikov Yu. A., Musikhin V. V., Lyskov I. A. Radar Interferometry-Based Determination of Ground Surface Subsidence under Mineral Mining. Journal of Mining Science. 2012. Vol. 48, Iss. 4. pp. 649–655.
23. Denkevich E. T., Zhuravkov M. A., Konovalov O. L., Krasnoproshin V. V., Krupoderov A. V. et al. Time-lapse technology of large-scale processes of earth surface deformation based on differential satellite interferometry with application of active reflectors. Part 1. Theoretical basis of satellite interferometry and preparation of initial data to carry out monitoring. Gornaya mekhanika i mashinostroenie. 2013. No. 1. pp. 5–15.
24. Pawluszek-Filipiak K., Borkowski A. Monitoring mining-induced subsidence by integrating differential radar interferometry and persistent scatterer techniques. European Journal of Remote Sensing. 2021. Vol. 54, Special issue 1. pp. 18–30.
25. Furst S. L., Doucet S., Vernant P., Champollion C., Carme J.-L. Monitoring surface deformation of deep salt mining in Vauvert (France), combining InSAR and leveling data for multi-source inversion. Solid Earth. 2021. Vol. 12, Iss. 1. pp. 15–34.
26. Hanssen R. F. Radar Interferometry: Data Interpretation and Error Analysis. Series: Remote Sensing and Digital Image Processing. New York : Kluwer Academic Publishers, 2001. Vol. 2. 308 p.
27. Massonnet D., Souyris J.-C. Imaging with Synthetic Aperture Radar. New York : EPFL Press, 2008. 250 p.
28. Baryakh A. A., Devyatkov S. Yu., Denkevich E. T. Mathematical modelling of displacement during the potash ores mining by longwall faces. Journal of Mining Institute. 2023. Vol. 259. pp. 13–20. DOI: 10.31897/PMI.2023.11

Language of full-text русский
Полный текст статьи Получить
Назад