Journals →  Tsvetnye Metally →  2023 →  #7 →  Back

ArticleName Influence of treatment of melts by nanosecond electromagnetic pulses on the distribution of elements in the structure of cast aluminum matrix composites
DOI 10.17580/tsm.2023.07.08
ArticleAuthor Deev V. B., Prusov E. S., Ree E. Kh., Kim E. D.

Wuhan Textile University, Wuhan, China1 ; National University of Science and Technology MISiS, Moscow, Russia2:
V. B. Deev, Professor of the Faculty of Mechanical Engineering and Automation1, Chief Researcher of the Laboratory “Ultrafine-grained Metallic Materials”2, Professor of the Chair for Metal Forming2, Doctor of Technical Sciences, e-mail:


Vladimir State University named after Alexander and Nikolai Stoletovs, Vladimir, Russia:

E. S. Prusov, Associate Professor, Chair for Technology of Functional and Structural Materials, Candidate of Technical Sciences, e-mail:


Pacific State University, Khabarovsk, Russia:

E. Kh. Ree, Professor, Head of the Chair for Foundry and Metal Technology, Doctor of Technical Sciences, e-mail:
E. D. Kim, Lecturer, Chair for Foundry and Metal Technology, Candidate of Technical Sciences, e-mail:


One of the promising groups of cast endogenously reinforced aluminum matrix composites are materials in which the role of reinforcing particles is played by primary compounds of crystallization origin, in particular, based on the pseudobinary Al – Mg2Si system. However, under the conditions of traditional casting and metallurgical processes, primary Mg2Si crystals precipitate in the form of dendrite-like complexes of unfavorable morphology and are relatively large in size, and the tendency to their coarsening increases with an increase in the volume content of the Mg2Si phase. In this regard, to ensure a sufficient level of mechanical and operational properties of cast composite materials of the Al – Mg2Si system, it is necessary to use additional modifying treatment. The article assesses the effect of treatment of melts with nanosecond electromagnetic pulses (NEMP) on the change in the nature of the distribution of chemical elements in the structural components of aluminum matrix composite materials Al – 20% (wt.) Mg2Si. It is shown that an increase in the irradiation amplitude to 15 kV at a frequency of 1 kHz was accompanied by an increase in the content of magnesium in the α-solid solution, as well as magnesium and silicon in the pseudobinary eutectic (α + Mg2Si), while the content of elements in the primary crystals of the Mg2Si phase remained unchanged. regardless of melt processing parameters. At the same time, the most highly dispersed eutectic is observed at the specified processing parameters. It is noted that the irradiation of the melt with NEMP reduces the fraction of local areas of the metal base inside the primary Mg2Si crystals, which leads to an increase in their microhardness to a level of 600–630 HV. The results obtained open up new possibilities for increasing the overall efficiency of the reinforcing action of the endogenous Mg2Si phase by modifying the morphological structure of its crystals.

This research was funded by the Russian Science Foundation (Project No. 20-19-00687).

keywords Cast aluminum matrix composites, endogenous reinforcement, nanosecond electromagnetic pulses, elemental composition, microhardness, structural components

1. Rohatgi P. K., Ajay Kumar P., Chelliah N. M., Rajan T. P. D. Solidification processing of cast metal matrix composites over the last 50 years and opportunities for the future. JOM. 2020. Vol. 72. pp. 2912–2926.
2. Bhowmik A., Dey D., Biswas A. Comparative study of microstructure, physical and mechanical characterization of SiC/TiB2 reinforced aluminium matrix composite. Silicon. 2021. Vol. 13. pp. 2003–2010.
3. Singh K., Singh H., Vardhan S., Mohan S. An overview on the synthesis of aluminium matrix composites using stir casting technique. Materials Today: Proceedings. 2022. Vol. 60, Part 2. pp. 868–872.
4. Raj R., Thakur D. Effect of particle size and volume fraction on the strengthening mechanisms of boron carbide reinforced aluminum metal matrix composites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2019. Vol. 233, Iss. 4. pp. 1345–1356.
5. Prusov E. S., Deev V. B., Aborkin A. V., Ri E. Kh., Rakhuba E. M. Structural and morphological characteristics of the friction surfaces of in situ cast aluminum matrix composites. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2021. Vol. 15, Iss. 6. pp. 1332–1337.
6. Mortensen A., Llorca J. Metal matrix composites. Annual Review of Materials Research. 2010. Vol. 40, Iss. 1. pp. 243–270.
7. Parikh V. K., Badheka V. J., Badgujar A. D., Ghetiya N. D. Fabrication and processing of aluminum alloy metal matrix composites. Materials and Manufacturing Processes. 2021. Vol. 36, Iss. 14. pp. 1604–1617.
8. Deev V. B., Prusov E. S., Ri E. H. Physical methods of processing the melts of metal matrix composites: current state and prospects. Russian Journal of Non-Ferrous Metals. 2022. Vol. 63, No. 3. pp. 292–304.
9. Tjong S. C., Ma Z. Y. Microstructural and mechanical characteristics of in situ metal matrix composites. Materials Science and Engineering: R. 2000. Vol. 29, Iss. 3–4. pp. 49–113.
10. Liu X., Liu Y., Huang D., Han Q., Wang X. Tailoring in situ TiB2 particulates in aluminum matrix composites. Materials Science and Engineering: A. 2017. Vol. 705. pp. 55–61.
11. Pandey U., Purohit R., Agarwal P., Kumar Singh S. Study of fabrication, testing and characterization of Al/TiC metal matrix composites through different processing techniques. Materials Today: Proceedings. 2018. Vol. 5, Iss. 2. pp. 4106–4117.
12. Luts A. R., Amosov A. P., Ermoshkin And. A., Ermoshkin Ant. A., Nikitin K. V. et al. Self-propagating high-temperature synthesis of highly dispersed titanium-carbide phase from powder mixtures in the aluminum melt. Russian Journal of Non-Ferrous Metals. 2014. Vol. 55, No. 6. pp. 606–612.
13. Borgonovo C., Apelian D. Processing of lightweight metal matrix composites via in situ gas/liquid reaction. Materials Science Forum. 2011. Vol. 678. pp. 115–123.
14. Akopyan T. K., Belov N. A., Naumova E. A., Letyagin N. V. New in situ Al matrix composites based on Al – Ni – La eutectic. Materials Letters. 2019. Vol. 245. pp. 110–113.
15. Srinivas V., Singh V. Development of in situ as cast Al – Mg2Si particulate composite: Microstructure refinement and modification studies. Transactions of the Indian Institute of Metals. 2012. Vol. 65, Iss. 6. pp. 759–764.
16. Bhandari R., Mallik M., Mondal M. K. Microstructure evolution and mechanical properties of in situ hypereutectic Al – Mg2Si composites. AIP Conference Proceedings. 2019. Vol. 2162. 020145.
17. Prach O., Hornik J., Mykhalenkov K. Effect of the addition of Li on the structure and mechanical properties of hypoeutectic Al – Mg2Si alloys. Acta Polytechnica. 2015. Vol. 55, Iss. 4. pp. 253–259.
18. Li H.-T., Scamans G., Fan Z. Refinement of the microstructure of an Al – Mg2Si hypereutectic alloy by intensive melt shearing. Materials Science Forum. 2013. Vol. 765. pp. 97–101.
19. Nordin N. A., Farahany S., Ourdjini, A., Abu Bakar T. A., Hamzah E. Refinement of Mg2Si reinforcement in a commercial Al – 20% Mg2Si in situ composite with bismuth, antimony and strontium. Materials Characterization. 2013. Vol. 86. pp. 97–107.
20. Lin J., Bai G., Liu Z., Niu L., Li G., Wen C. Effect of ultrasonic stirring on the microstructure and mechanical properties of in situ Mg2Si/Al composite. Materials Chemistry and Physics. 2016. Vol. 178. pp. 112–118.
21. Saffari S., Akhlaghi F. Microstructure and mechanical properties of Al – Mg2Si composite fabricated in situ by vibrating cooling slope. Transactions of Nonferrous Metals Society of China. 2018. Vol. 28, Iss. 4. pp. 604–612.
22. Nikitin K. V., Amosov E. A., Nikitin V. I., Glushchenkov V. A., Chernikov D. G. Theoretical and experimental substantiation of treatment of aluminum-based melts by pulsed magnetic fields. Russian Journal of Non-Ferrous Metals. 2015. Vol. 56, No. 6. pp. 599–605.
23. Nikitin K. V., Nikitin V. I., Timoshkin I. Y., Glushchenkov V. A., Chernikov D. G. Melt treatment by pulsed magnetic fields aimed at controlling the structure and properties of industrial silumins. Russian Journal of Non-Ferrous Metals. 2016. Vol. 57, No. 3. pp. 202–210.
24. Deev V. B., Ri E. Kh., Prusov E. S., Ermakov M. A., Kim E. D. Influence of parameters of melt processing by nanosecond electromagnetic pulses on the structure formation of cast aluminum matrix composites. Russian Journal of Non-Ferrous Metals. 2022. Vol. 63, No. 4. pp. 392–399.
25. ISO 6507–1:2018. Metals and alloys. Vickers hardness test. Part 1. Test method. Published: 10.01.2018.

Language of full-text russian
Full content Buy