Журналы →  Tsvetnye Metally →  2023 →  №6 →  Назад

MATERIALS SCIENCE
Название Structure of pseudobinary hypoeutectic aluminium alloys altered under the influence of electromagnetic pulses
DOI 10.17580/tsm.2023.06.11
Автор Deev V. B., Ri E. H., Prusov E. S., Ermakov M. A.
Информация об авторе

Wuhan Textile University, Wuhan, China1 ; Vladimir State University named after Alexander and Nikolay Stoletovs, Vladimir, Russia2 ; National University of Science and Technology MISiS, Moscow, Russia3:

V. B. Deev, Professor at the Faculty of Mechanical Engineering and Automation1, Chief Researcher of Project Тeam Management2, Professor at the Department of Metal Forming3, Doctor of Technical Sciences, e-mail: deev.vb@mail.ru

Vladimir State University named after Alexander and Nikolay Stoletovs, Vladimir, Russia:

E. S. Prusov, Associate Professor at the Department of Functional and Structural Materials Engineering, Candidate of Technical Sciences, e-mail: eprusov@mail.ru

 

Pacific National University, Khabarovsk, Russia:

E. H. Ri, Head of the Department of Casting and Metals Technology, Doctor of Technical Sciences, e-mail: erikri999@mail.ru

M. A. Ermakov, Associate Professor at the Department of Casting and Metals Technology, Candidate of Technical Sciences, e-mail: ermakovma@yandex.ru

Реферат

This paper looks at the redistribution of alloying and trace elements in the structural components of cast aluminium alloys in the region of hypoeutectic compositions of a pseudobinary Al – Mg2Si system after the melts have been exposed to nanosecond electromagnetic pulses. Comparison of the results of scanning electron microscopy and electron probe microanalysis of aluminium alloy specimens in their initial state and after exposure to nanosecond electromagnetic pulses with varying pulse amplitudes confirmed that the elemental composition of the structural components tend to change under the influence of nanosecond electromagnetic pulses. As the amplitude of the nanosecond electromagnetic pulse generator rose to 15 kV, the concentration of magnesium in the α-solid solution would consistently rise. At the same time, the concentration of magnesium and silicon in the pseudobinary (α + Mg2Si) eutectic would see a decrease as the amplitude would rise to the said value. Besides, an increase of the generator amplitude to 15 kV at the fixed pulse frequency of 1 kHz led to a noticeable morphological modification of the pseudobinary eutectic phases, as well as their increased dispersion and a decreased average size of the dendritic cell.

Support for this research was provided under grant by the Russian Science Foundation, Project No. 20-19-00687.

Ключевые слова Cast aluminium alloys, pseudobinary Al – Mg2Si system, region of hypoeutectic compositions, nanosecond electromagnetic pulses, structural components, distribution of alloying elements.
Библиографический список

1. Davis J. R. Aluminum and aluminum alloys. ASM Speciality Handbook, ASM International : Materials Park, OH, USA, 1993. 784 p.
2. Belov N. A., Eskin D. G., Aksenov A. A. Multicomponent phase diagrams: applications for commercial aluminum alloys. Elsevier Science, Amsterdam; Boston, 2005. 413 p.
3. Asensio-Lozano J., Suárez-Peña B., Vander Voort G. Effect of processing steps on the mechanical properties and surface appearance of 6063 aluminium extruded products. Materials. 2014. Vol. 7, Iss. 6. pp. 4224–4242.
4. Li C., Wang C., Yang Z.-Z., Ma P.-K. et al. Effect of complex modification of Ca and Sb on the microstructure and mechanical properties of hypoeutectic Al – 11 Mg2Si alloy. Journal of Alloys and Compounds. 2021. Vol. 869. 159304.
5. Trudonoshyn O., Prach O., Slyudova A., Lisovskii V. Structure formation and multistep nucleation in casting Al – Mg – Si alloys. International Journal of Cast Metals Research. 2020. Vol. 33, Iss. 4-5. pp. 184–193.
6. Ji S., Watson D., Fan Z., White M. Development of a super ductile die cast Al – Mg – Si alloy. Materials Science and Engineering A. 2012. Vol. 556. pp. 824–833.
7. Slyudova A., Trudonoshyn O., Prach O., Lisovski V. Morphology and nucleation of intermetallic phases in casting Al – Mg – Si alloys. Metallography, Microstructure, and Analysis. 2020. Vol. 9. pp. 873–883.
8. Zhu X., Yang H., Dong X., Ji S. The effects of varying Mg and Si levels on the microstructural inhomogeneity and eutectic Mg2Si morphology in diecast Al – Mg – Si alloys. Journal of Materials Science. 2019. Vol. 54, Iss. 7. pp. 5773–5787.
9. Nordin N. A., Farahany S., Ourdjini A., Abu Bakar T. A., Hamzah E. Refinement of Mg2Si reinforcement in a commercial Al – 20% Mg2Si in-situ composite with bismuth, antimony and strontium. Materials Characterization. 2013. Vol. 86. pp. 97–107.
10. Wu X., Zhang G., Wu F., Wang Z. Influence of neodymium addition on microstructure, tensile properties and fracture behavior of cast Al – Mg2Si metal matrix composite. Journal of Rare Earths. 2013. Vol. 31, Iss. 3. pp. 307–312.
11. Ghandvar H., Idris M. H., Ahmad N., Emamy M. Effect of gadolinium addition on microstructural evolution and solidification characteristics of Al – 15% Mg2Si in-situ composite. Materials Characterization. 2018. Vol. 135. pp. 57–70.
12. Zuo M., Ren B., Xia Z., Ma W. et al. Microstructure evolution and performance improvement of Hypereutectic Al – Mg2Si Metallic Composite with Ca or Sb. Materials. 2020. Vol. 13, Iss. 12. 2714.
13. Easton M. A., Qian M., Prasad A., StJohn D. H. Recent advances in grain refinement of light metals and alloys. Current Opinion in Solid State & Materials Science. 2016. Vol. 20. pp. 13–24.
14. Qiu M.-L., Shui L. Effect of melt superheating treatment on microstructure of hypereutectic Al – Si alloys. Foundry. 2012. Vol. 61, Iss. 11. pp. 1348–1351.
15. Deev V. B., Prusov E. S., Kutsenko A. I. Theoretical and experimental evaluation of the effectiveness of aluminum melt treatment by physical methods. Metallurgia Italiana. 2018. Vol. 110, No. 2. pp. 16–24.
16. Deev V., Prusov E., Rakhuba E. Physical methods of melt processing at production of aluminum alloys and composites: opportunities and prospects of application. Materials Science Forum. 2019. Vol. 946. pp. 655–660.
17. Krymsky V., Shaburova N. Applying of pulsed electromagnetic processing of melts in laboratory and industrial conditions. Materials. 2018. Vol. 11, No. 6. 954.
18. Deev V. B., Ri E. Kh., Prusov E. S., Ermakov M. A., Kim E. D. Influence of parameters of melt processing by nanosecond electromagnetic pulses on the structure formation of cast aluminum matrix composites. Russian Journal of Non-Ferrous Metals. 2022. Vol. 63, No. 4. pp. 392–399.
19. Zhang J., Fan Z., Wang Y. Q., Zhou B. L. Equilibrium pseudobinary Al – Mg2Si phase diagram. Materials Science and Technology. 2001. Vol. 17, Iss. 5. pp. 494–496.
20. Deev V. B., Ri E. H., Prusov E. S., Ermakov M. A., Goncharov A. V. Grain refinement of casting aluminum alloys of the Al – Mg – Si system by processing the liquid phase using nanosecond electromagnetic pulses. Russian Journal of Non-Ferrous Metals. 2021. Vol. 62, Iss. 5. pp. 522–530.
21. Bai Q., Wang J., Xing S., Ma Y., Bao X. Crystal orientation and crystal structure of paramagnetic α-Al under a pulsed electromagnetic field. Scientific Reports. 2020. Vol. 10. 10603.

Language of full-text русский
Полный текст статьи Получить
Назад