Журналы →  Tsvetnye Metally →  2023 →  №6 →  Назад

MATERIALS SCIENCE
Название Effect of iron impurity on the structure and phase composition of Al – 6% Mg – 2% Ca – 2% Zn alloy
DOI 10.17580/tsm.2023.06.10
Автор Doroshenko V. V., Aksenov A. A., Mansurov Yu. N.
Информация об авторе

National University of Science and Technology MISiS, Moscow, Russia1 ; Moscow Polytechnic University, Moscow, Russia2:

V. V. Doroshenko, Junior Researcher at the Laboratory for Catalysis and Hydrocarbons Processing1, Associate Professor at the Project Implementation Section2, Candidate of Technical Sciences, e-mail: v.doroshenko@mail.ru


Moscow Polytechnic University, Moscow, Russia.
A. A. Aksenov, Adviser to the Rector, Doctor of Technical Sciences, Professor

 

Tashkent State Transport University, Tashkent, Republic of Uzbekistan:
Yu. N. Mansurov, Professor at the Department of Carriages and Carriage Facilities, Doctor of Technical Sciences

Реферат

This paper looks at the effect of iron impurities on the structure and phase composition of an experimental alloy Al – 6 % Mg – 2 % Ca – 2 % Zn. The microstructure of the studied as-cast alloys consists of an aluminium solid solution and a dispersion eutectic comprising phases of non-equilibrium origin. No primary phases of crystallization origin were found in the structure when the Fe concentration did not exceed 0.5 wt. %. Iron-bearing phases are included in the multiphase eutectic, and the presence of calcium in these phases is below the expected level, which suggests that the share of the ternary compound Al10CaFe2 in the content is really small. An increase in the Fe concentration to 1% contributes to the formation of fan-shaped crystals corresponding to the Al3Fe phase, which are, though, of small size (20 μm maximum). Because of its high solubility in the Al4Ca phase, zinc weakens the aluminium solid solution while failing to prevent the formation of the strengthening Tphase (Al2Mg3Zn3) present in the calculations. The concentration of magnesium in (Al) is lower than its concentration in the alloys. Cooling down of alloys together with the furnace helped determine how the rate of crystallization can influence the phase composition. Conglomerates of (AlZn)3Mg2 and (AlZn)2(MgCa) phases were identified in all the alloys. The following peritectic reaction was observed in almost none of the alloys: L + Al3Fe → (Al) + Al10CaFe2. As the result of this, Al3Fe phase needles appeared in the structure. Fan-shaped iron-bearing crystals of mixed composition were only observed in the 0.25% Fe alloy.
This paper was written thanks to funding provided by the Russian Science Foundation under Grant No. 21-79-00134 (Thermp-Calc calculations, casting of ingots) and by the Moscow Polytechnic University under the Kapitsa grant implemented as part of the Prioritet 2030 programme (obtaining SEM images).

Ключевые слова Aluminium, calcium, iron, Thermo-Calc, microstructure, eutectic, aluminides
Библиографический список

1. Malinauskaite J., Jouhara H., Egilegor B., Al-Mansour F. et al. Energy efficiency in the industrial sector in the EU, Slovenia, and Spain. Energy. 2020. Vol. 208. 118398. DOI: 10.1016/j.energy.2020.118398
2. Zakirov D. G., Slautin Yu. A., Polevshchikov I. S. Prospects of enhancing the energy efficiency and environmental safety of coal sites. Simvol Nauki: Mezhdunarodnyi Nauchnyi Zhurnal. 2015. No. 12. pp. 38–40.

3. Xu M., Lin B. Energy efficiency gains from distortion mitigation: A perspective on the metallurgical industry. Resources Policy. 2022. Vol. 77. 102758. DOI: 10.1016/j.resourpol.2022.102758
4. Valiev R. F. Measures aimed at saving energy and achieving energy efficiency in Russia’s gas industry. Vestnik nauki. 2020. Vol. 1, No. 11. pp. 53–55.
5. Ajanovic А., Haas R. Economic and environmental prospects for battery electric- and fuel cell vehicles: a review. Fuel Cells. 2019. Vol. 19, Iss. 5. pp. 515–529. DOI: 10.1002/fuce.201800171
6. Yeh S., Mishra G. S., Fulton L., Kyle P. et al. Detailed assessment of global transport-energy models’ structures and projections. Transportation Research Part D: Transport and Environment. 2017. Vol. 55. pp. 294–309. DOI: 10.1016/j.trd.2016.11.001
7. Mikhaylyuta S. V., Kucherenko A. V., Lezhenin A. A. The problems of analyzing the structure of emissions in the production site – motor transport system. Ekologiya i promyshlennost Rossii. 2017. Vol. 21, No. 4. pp. 54–58. DOI: 10.18412/1816-0395-2017-4-54-58
8. Liu G., Muller B. D. Centennial evolution of aluminum in-use stocks on our aluminized planet. Environmental Science and Technology. 2013. Vol. 47, Iss. 9. pp. 4882–4888. DOI: 10.1021/es305108p
9. Gorbunov Yu. A. Use of parts of aluminium alloys when making and rebuilding land and water transport in the Russian Federation. Tekhnologiya legkikh splavov. 2015. No. 1. pp. 87–92.
10. Borovik D. A. Potential application of aluminium in car industry. Avtomobil. Doroga. Infrastruktura. 2022. No. 1 (31). 3.
11. Kumar A., Maithani R., Kumar A., Kumar D., Sharma S. An all-aluminium vehicle's design and feasibility analysis. Materials Today: Proceedings. 2022. Vol. 64, Iss. 3. pp. 1244–1249. DOI: 10.1016/j.matpr.2022.03.714
12. Palazzo J., Geyer R. Consequential life cycle assessment of automotive material substitution: Replacing steel with aluminum in production of North American vehicles. Environmental Impact Assessment Review. 2019. Vol. 75. pp. 47–58. DOI: 10.1016/j.eiar.2018.12.001
13. Zhang H., Guo Ch., Li Sh., Li B., Nagaumi H. Influence of cold predeformation on the microstructure, mechanical properties and corrosion resistance of Zn-bearing 5xxx aluminum alloy. Journal of Materials Research and Technology. 2022. Vol. 16. pp. 1202–1212. DOI: 10.1016/j.jmrt.2021.12.080
14. Scotto D'Antuono D., Gaies J., Golumbfskie W., Taheri M. L. Direct measurement of the effect of cold rolling on β phase precipitation kinetics in 5xxx series aluminum alloys. Acta Materialia. 2017. Vol. 123. pp. 264–271. DOI: 10.1016/j.actamat.2016.10.060
15. Matsumoto K., Aruga Y., Tsuneishi H., Iwai H. et al. Effects of Zn addition and aging condition on serrated flow in Al – Mg Alloys. Materials Science Forum. 2014. Vol. 794–796. pp. 483–488. DOI: 10.4028/www.scientific.net/MSF.794-796.483
16. Yun J., Kang S., Lee S., Bae D. Development of heat-treatable Al – 5 Mg alloy sheets with the addition of Zn. Materials Science and Engineering: A. 2019. Vol. 744. pp. 21–27. DOI: 10.1016/j.msea.2018.11.145
17. Yang X. B., Chen J. H., Liu J. Z., Qin F. et al. A high-strength AlZnMg alloy hardened by the T-phase precipitates. Journal of Alloys and Compounds. 2014. Vol. 610. pp. 69–73. DOI: 10.1016/j.jallcom.2014.04.185
18. Trink B., Weiβensteiner I., Uggowitzer P. J., Strobel K., Pogatscher S. High Fe content in Al – Mg – Si wrought alloys facilitates excellent mechanical properties. Scripta Materialia. 2022. Vol 215. 114701. DOI: 10.1016/j.scriptamat.2022.114701
19. Mansurov Yu. N., Zolotorevskiy V. S., Belov N. A. Morphology and composition of iron-bearing phases in casting magnaliums. Izvestiya vuzov. Tsvetnaya metallurgiya. 1986. No. 4. pp. 85–90.
20. Mansurov Yu. N., Rikhsiboev A. R., Mansurov S. Yu. Structure formation regularities in multicomponent secondary aluminium alloys. Metallurg. 2019. No. 12. pp. 60–66.
21. Doroshenko V. V., Barykin M. A., Vasina M. A., Aksenov A. A. Combined effect of calcium and zinc on the hot cracking of Al – Mg аlloys. Tsvetnye Metally. 2022. No. 12. pp. 45–54.
22. Doroshenko V. V., Barykin M. A., Korotkova N. O., Vasina M. A. Effect of calcium and zinc on the structure and phase composition of casting magnaliums. Fizika metallov i metallovedenie. 2022. Vol. 123 (8). pp. 872–880. DOI: 10.31857/S0015323022080034
23. Belov N. A., Naumova E. A., Akopyan T. K., Doroshenko V. V. Phase diagram of the Al – Ca – Fe – Si system and its application for the design of aluminum matrix composites. JOM. 2018. Vol. 70. pp. 2710–2715. DOI: 10.1007/s11837-018-2948-3
24. Belov N. A., Akopyan T. K., Korotkova N. O., Naumova E. A. Structure and properties of Al – Ca(Fe, Si, Zr, Sc) wire alloy manufactured from as-cast billet. JOM. 2020. Vol. 72, Iss. 11. pp. 3760–3768. DOI: 10.1007/s11837-020-04342-x
25. GOST 11069–2001. Primary aluminium. Grades. Introduced: 01.01.2003.
26. GOST 804–93. Primary magnesium ingots. Specifications. Introduced: 01.01.1997.
27. TU 083.5.314–94. Metallic calcium.
28. GOST 3640–94. Zinc. Specifications. Introduced: 01.01.1997.
29. GOST 9012–59. Metals. Method of Brinell hardness measurement. Introduced: 01.01.1960.
30. Belov N. A., Naumova E. A., Akopyan T. K. Aluminium-based eutectic alloys: New alloying systems. Moscow : “Ore and Metals” Publishing House, 2016. 256 p.
31. Mondolfo L. F. Aluminum alloys: structure and properties. London/Boston : Butterworths, 1976.
32. Kim B. H., Salehi M. S., Nouri A., Mohebi M. S. et al. Role of Ca in hot compression behavior and microstructural stability of AlMg5 alloy during homogenization. Transactions of Nonferrous Metals Society of China. 2020. Vol. 30, Iss. 3. pp. 571–581. DOI: 10.1016/S1003-6326(20)65236-0

Language of full-text русский
Полный текст статьи Получить
Назад