Журналы →  Tsvetnye Metally →  2023 →  №6 →  Назад

MATERIALS SCIENCE
Название Developing a technique for mathematical modelling of texture components during rolling
DOI 10.17580/tsm.2023.06.09
Автор Aryshenskiy E. V., Konovalov S. V., Aryshenskiy V. Yu., Beglov E. D.
Информация об авторе

Samara National Research University, Samara, Russia:

E. V. Aryshenskiy, Associate Professor at the Department of Metal Technology and Aviation Materials Engineering, Leader of Industry-Specific Research Laboratory No. 4, Doctor of Technical Sciences, e-mail: arishenskiy.ev@ssau.ru


Siberian State Industrial University, Novokuznetsk, Russia:
S. V. Konovalov, Vice Rector for Research and Innovation, Professor, Doctor of Technical Sciences, e-mail: konovalov@sibsiu.ru


Samara Metallurgical Plant JSC, Samara, Russia:
V. Yu. Aryshenskiy, Principal Rolling Mill Specialist, Professor, Doctor of Technical Sciences, e-mail: Vladimir.Aryshensky@samara-metallurg.ru
E. D. Beglov, Manager, Candidate of Technical Sciences, e-mail: Erkin.Beglov@samara-metallurg.ru

Реферат

A new approach is offered to the partitioning of solution region when modelling the deformation texture forming in aluminium alloys. This method is based on finding the stress-strain state and the speed field on the macrolevel with the help of finite element method. The solution region is then divided into domains, which, in their turn, are divided into finite elements. There is a grain with its crystallographic orientation that corresponds to one or several of these elements. After that, boundary conditions are set based on the speed field calculated for each domain on the macrolevel. And then a problem of domain deformation and crystallographic texture formation is solved. In the course of problem sol ving, a slip plane is determined for each crystallite that belonged to the domain. A laboratory experiment was conducted to confirm the adequacy of the developed method. A comparison of experimental and simulation data showed that the new approach enables to carry out an efficient simulation of the texture forming in different sections, which experience strain differently. Besides, the new approach helps shorten the simulation time compared with other finite element methods of crystal plasticity modelling, which are used to simulate the texture forming in aluminium alloys under deformation.
This research was funded through grant by the Russian Science Foundation; Project: 18-79-10099-П, https://rscf.ru/project/21-79-03041/.

Ключевые слова Texture, crystal plasticity theory, aluminium, modelling, X-ray structural analysis
Библиографический список

1. Voronin S. V., Chaplygin K. K. Determining the crystallographic orientation by scanning probe microscopy and polarizing microscopy with use of the FCC lattice of aluminum as an example. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2022. Vol. 16, Iss. 6. pp. 1297–1300.
2. Savchenkov S. et al. Microstructural master alloys features of aluminum–erbium system. Crystals. 2021. Vol. 11, Iss. 11. 1353.
3. Belov N. A., Akopyan T. K., Korotkova N. O., Shurkin P. K. et al. Structure and heat resistance of high strength Al – 3,3 % Cu – 2,5 % Mn – 0,5 % Zr (wt%) conductive wire alloy manufactured by electromagnetic casting. Journal of Alloys and Compounds. 2022. Vol. 891. 161948.
4. Timofeev A. V., Piirainen V. Y., Bazhin V. Y., Titov A. B. Operational analysis and medium-term forecasting of the greenhouse gas generation intensity in the cryolithozone. Atmosphere. 2021. Vol. 12, Iss. 11. 1466.
5. Belov N. A., Cherkasov S. O., Korotkova N. O., Yakovleva A. O., Tsydenov K. A. Effect of iron and silicon on the phase composition and microstructure of the Al – 2 % Cu – 2 % Mn (wt %) cold rolled alloy. Physics of Metals and Metallography. 2021. Vol. 122. pp. 1095–1102.
6. Hirsch J. Hot formability and texture formation in Al alloys. Materials Science Forum. 2009. Vol. 604. pp. 259–266.
7. Engler O., Knarbakk K. Temper rolling to control texture and earing in aluminium alloy AA 5050A. Journal of Materials Processing Technology. 2021. Vol. 288. 116910.
8. Erisov Y. A., Grechnikov F. V., Oglodkov M. S. The influence of fabrication modes of sheets of V-1461 alloy on the structure crystallography and anisotropy of properties. Russian Journal of Non-Ferrous Metals. 2016. Vol. 57, Iss. 1. pp. 19–24.
9. Erisov Y. A., Grechnikov F. V., Surudin S. V. Yield function of the orthotropic material considering the crystallographic texture. Structural Engineering and Mechanics. 2016. Vol. 58, Iss. 4. pp. 677–687.
10. Hirsch J. Through process modelling. Materials Science Forum. 2006. Vol. 519. pp. 15–24.
11. Engler O., Lоchte L., Hirsch J. Through-process simulation of texture and properties during the thermomechanical processing of aluminium sheets. Acta Materialia. 2007. Vol. 55, Iss. 16. pp. 5449–5463.
12. Trusov P., Shveykin A., Kondratev N. Some issues on crystal plasticity models formulation: motion decomposition and constitutive law variants. Crystals. 2021. Vol. 11, Iss. 11. p. 1392.
13. Trusov P. V., Shveykin A. I., Nechaeva E. S., Volegov P. S. Multilevel models of inelastic deformation of materials and their application for description of internal structure evolution. Physical Mesomechanics. 2012. Vol. 15. pp. 155–175.
14. Trusov P. V., Shveykin A. I. Multilevel models of mono- and polycrystalline materials: Theory, algorithms, case studies. Novosibirsk : Izdatelstvo Sibirskogo otdeleniya RAN, 2019. 605 p.
15. Engler O., Crumbach M., Li S. Alloy-dependent rolling texture simulation of aluminium alloys with a grain-interaction model. Acta Materialia. 2005. Vol. 53, Iss. 8. pp. 2241–2257.
16. Van Houtte P., Delannay L., Kalidindi S. R. Comparison of two grain interaction models for polycrystal plasticity and deformation texture prediction. International Journal of Plasticity. 2002. Vol. 18, Iss. 3. pp. 359–377.
17. Van Houtte P., Li S., Seefeldt M., Delannay L. Deformation texture prediction: from the Taylor model to the advanced Lamel model. International Journal of Plasticity. 2005. Vol. 21, Iss. 3. pp. 589–624.
18. Bate P. Modelling deformation microstructure with the crystal plasticity finite-element method. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 1999. Vol. 357, No. 1756. pp. 1589–1601.
19. Robert W., Piot D., Driver J. H. A rapid deformation texture model incorporating grain interactions. Scripta Materialia. 2004. Vol. 50, Iss. 9. pp. 1215–1219.
20. Engler O., Tomé C. N., Huh M. Y. A study of through-thickness texture gradients in rolled sheets. Metallurgical and Materials Transactions A. 2000. Vol. 31, Iss. 9. pp. 2299–2315.
21. Panin V. E. Fundamentals of physical mesomechanics. Fizicheskaya mezomekhanika. 1998. Vol. 1, No. 1. pp. 5–22.
22. Totten G. E., MacKenzie D. S. Handbook of aluminum: Vol. 1: Physical metallurgy and processes. CRC press, 2003. 1310 p.
23. Dixit P. M., Dixit U. S. Modeling of metal forming and machining processes: by finite element and soft computing methods. Springer Science & Business Media, 2008. 590 p.
24. Khan A. S., Huang S. Continuum theory of plasticity. John Wiley & Sons, 1995. 448 p.
25. Van Houtte P. A comprehensive mathematical formulation of an extended Taylor–Bishop–Hill model featuring relaxed constraints, the Renouard–Wintenberger theory and a strain rate sensitivity model. Textures and Microstructures. 1988. Vol. 8. pp. 313–350.
26. Mathur K. K., Dawson P. R. On modeling the development of crystallographic texture in bulk forming processes. International Journal of Plasticity. 1989. Vol. 5, Iss. 1. pp. 67–94.
27. Shveykin A. I., Ashikhmin V. N., Trusov P. V. On the models of lattice rotation during metal forming. PNRPU Mechanics Bulletin. 2010. No. 1. pp. 111–127.
28. Aryshenskiy E. V., Beglov E. D., Aryshenskiy V. Yu., Konovalov S. V. Face-centered cubic lattice polycrystalline materials: Deformation process simulation. Computer programme registration certificate 2022660872. Application No. 2022660102 dated 01.06.2022.
29. Aryshenskiy V. Yu. Developing a mechanism for producing a given anisotropy of properties when rolling aluminium strips for deep drawing and ironing: Doctoral dissertation. Samara, 2002. 312 p.
30. Engler O., Tomé C. N., Huh M. Y. A study of through-thickness texture gradients in rolled sheets. Metallurgical and Materials Transactions A. 2000. Vol. 31, Iss. 9. pp. 2299–2315.
31. Puchi E. S., Staia M. H. High-temperature deformation of commercialpurity aluminum. Metallurgical and Materials Transactions. 1998. Vol. 29, Iss. 9. pp. 2345–2359.

Language of full-text русский
Полный текст статьи Получить
Назад