Журналы →  Gornyi Zhurnal →  2023 →  №6 →  Назад

FROM THE OPERATIONAL EXPERIENCE OF THE MINING COMPANIES AND THE ORGANIZATIONS
NORNICKEL’S POLAR DIVISION
Название Numerical modeling in ground penetrating radar-based assessment of concrete lining and space behind it
DOI 10.17580/gzh.2023.06.04
Автор Marusyuk V. P., Shilenko S. Yu., Kibroev I. S., Khanina I. A.
Информация об авторе

NorNickel’s Polar Division, Norilsk, Russia:

V. P. Marusyuk, Chief Geotechnical Engineer—Director of Center for Geodynamic Safety, Candidate of Engineering Sciences
S. Yu. Shilenko, Deputy Director of Occupational Safety and Health
I. S. Kibroev, Hydrogeologist, KibroevIS@nornik.ru
I. A. Khanina, Surveyor

Реферат

The article focuses on the theoretical framework of the Finite-Difference Time-Domain (FDTD) method and its application in the ground penetrating radar-based research. FDTD is advantageous in investigation of electromagnetic wave propagation by ground penetrating radar over the other methods of numerical modeling. The authors performed numerical modeling of nonuniformities in concrete lining and in the space behind it using ground penetrating radar at frequencies of 400 MHz and 900 MHz. The described schemes of modeling were used to determine the causes of simple multiple and peg-leg multiple reflections in terms of real-life field data, and to arrive to a better and unambiguous interpretation. The modeling results show that the field data agree best of all with the concrete–water layer–rock scheme of modeling. It is demonstrated that even simple modeling schemes can provide rather detailed interpretations applicable in the real-life data analysis. The synthetic and field radargrams are compared, and a more unambiguous interpretation of real-life data is given on this basis. Mathematical modeling is an important tool in ground penetrating radar; it enables: assessment of the instrumentation capabilities; selection of an appropriate procedure; proper field testing; understanding of influence exerted by test subjects on the wave pattern; checkout of the correctness of an inverse problem solution during interpretation.

The authors appreciate participation of A. S. Manzhosov.

Ключевые слова Mathematical modeling, ground penetrating radar, Maxwell equation, frequency, discretization interval, Finite-Difference Time-Domain
Библиографический список

1. Montoya T. P., Smith G. S. Land Mine Detection Using a Ground-Penetrating Radar Based on Resistively Loaded Vee Dipoles. IEEE Transactions on Antennas and Propagation. 1999. Vol. 47, No. 12. pp. 1795–1806.
2. Xiaoyong Zou. Research on Asphalt Pavement Thickness Detection Based on Ground Penetrating Radar. Municipal Engineers Journal. 2022. Vol. 40(12). pp. 178–184.
3. Zhen Liu, Yeoh J. K. W., Xingyu Gu, Qiao Dong, Yihan Chen et al. Automatic pixel-level detection of vertical cracks in asphal t pavement based on GPR investigation and improved mask R-CNN. Automation in Construction. 2023. Vol. 146. 104689. DOI: 10.1016/j.autcon.2022.104689

4. Xiaoxian Zeng, McMechan G. A. GPR characterization of buried tanks and pipes. Geophysics. 1997. Vol. 62, No. 3. pp. 797–806.
5. Jaufer R. M., Ihamouten A., Goyat Y., Todkar S. S., Guilbert D. et al. A Preliminary Numerical Study to Compare the Physical Method and Machine Learning Methods Applied to GPR Data for Underground Utility Network Characterization. Remote Sensing. 2022. Vol. 14, Iss. 4. 1047. DOI: 10.3390/rs14041047
6. Lampe B., Holliger K. Resistively loaded antennas for ground penetrating radar antennas. Geophysics. 2005. Vol. 70. pp. 23–32.
7. Volkomirskaya L. B., Gulevich O. A., Varenkov V. V., Sakhterov V. I. Requirements for the performance of a ground-penetrating radar system in searching for cavities. Russian Geology and Geophysics. 2018. Vol. 59, No. 4. pp. 438–447.
8. Gulevich O. A., Volkomirskaya L. B., Mingalev I. V., Suvorova Z. V., Akhmetov O. I. et al. Propagation of video pulse signals in dissipative media. Zhurnal radioelektroniki. 2021. No. 11. DOI: 10.30898/1684-1719.2021.11.8
9. Rodriguez-Abad I., Mené-Aparicio J., Martinez-Sala R., Botella Y. Parametric Study of GPR Signals Numerical Model to Analyze Hardened Concrete Response at Different Antenna Positions. Proceedings of the 24th European Meeting of Environmental and Engineering Geophysics, 2018. DOI: 10.3997/2214-4609.201802473
10. Holliger K., Bergmann T. Numerical modelling of borehole georadar data. Geophysics. 2002. Vol. 67, No. 4. pp. 1249–1257.
11. Deming Wang, McMechan G. A. Finite-difference modeling of borehole ground penetrating radar data. Journal of Applied Geophysics. 2002. Vol. 49, Iss. 3. pp. 111–127.
12. Shaari A., Millard S. G., Bungey J. H. Modelling the propagation of a radar signal through concrete as a low-pass filter. NDT & E International. 2004. Vol. 37, Iss. 3. pp. 237–242.
13. Carcione J. M. Ground radar simulation for archaeological applications. Geophysical Prospecting. 1996. Vol. 44, Iss. 5. pp. 871–888.
14. Nabatov V. V., Voznesenskiy A. S. Processing and interpretation of geophysical survey and nondestructive testing data. Moscow, 2019. 278 p.
15. Giannopoulos A. Modelling ground penetrating radar by GprMax. Construction and Build ing Materials. 2005. Vol. 19, Iss. 10. pp. 755–762.
16. Yee K. S. Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media. IEEE Transactions on Antennas and Propagation. 1966. Vol. 14, Iss. 3. pp. 302–307.
17. Bricheva S. S. Ground penetrating radar-based procedure for cryogenic object investigation : Dissertation … of Candidate of Geologo-Mineralogical Sciences. Moscow, 2018. 169 p.
18. Sukhobok Yu. A., Pupatenko V. V., Stoyanovich G. M. Elementaries of decipherment and interpretation of radargrams : Tutorial. Khabarovsk : Izdatelstvo DVGUPS, 2018. 87 p.
19. Taflove A. Computational Electrodynamics—The Finite-Difference Time-Domain Method. London : Artech House, 1995. 599 p.
20. Taflove A. Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method. Boston : Artech House, 1998. 735 p.
21. Kunz K. S., Luebbers R. J. The Finite Difference Time Domain Method for Electromagnetics. Boca Raton : CRC Press, 1993. 448 p.
22. Warren C., Giannopoulos A., Giannakis I. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar. Computer Physics Communications. 2016. Vol. 209. pp. 163–170.
23. Cassidy N. J. A review of practical numerical modelling methods for the advanced interpretation of ground‐penetrating radar in near‐surface environments. Near Surface Geophysics. 2007. Vol. 5, No. 1. pp. 5–21.

Language of full-text русский
Полный текст статьи Получить
Назад