Journals →  Gornyi Zhurnal →  2023 →  #5 →  Back

ArticleName Determination of strength properties for slope stability estimate in dumps
DOI 10.17580/gzh.2023.05.08
ArticleAuthor Pavlovich A. A., Khoreva A. Yu.

Research Center for Geomechanics and Mining Practice Problems, Saint-Petersburg Mining University, Saint-Petersburg, Russia:

A. A. Pavlovich, Head of Laboratory, Candidate of Engineering Sciences,
A. Yu. Khoreva, Researcher, Candidate of Engineering Sciences


Persistent intensification of mining in lacking of land for overburden storage necessitates maximizing intake capacity of the available dumps and involves dumping in difficult and deformation-prone conditions. A dump can start deforming at early stage of construction. The main cause of deformation is inconsistency of the dump design and the actual geotechnical conditions. Justification of slope stability of dump projects should rest upon site survey results. This article describes the lab-scale tests of rock refuse mixtures. The testing aimed to assess the influence of grain size and moisture content of samples on their shearing strength. The single-plane shear tests used GCTS RDS 200 system and ELE device for strong and loose rocks. The test data of rock refuse mixtures are compared with the dependences developed by Leps, which are commonly used abroad to determine strength properties of rock refuse in dumps. The analysis of the test results proves that the lab-scale single-plane shear testing of loose rocks allows taking into account special features of a project structure. On the other hand, the lab-scale shearing machines with a small shear area provide a wide scatter of data only suitable for an approximate analysis. Therefore, in construction of standard “simple” dumps, it is permissible to use curves analogous to Leps’ relations, or the relations from this study.

keywords Dump, dump bed, rock refuse, physical and mechanical properties, single-plane shear, internal friction angle, cohesion, slope

1. Trushko V. L., Protosenya A. G. Prospects of geomechanics development in the context of new technological paradigm. Journal of Mining Institute. 2019. Vol. 236. pp. 162–166.
2. Kutepov Yu. I., Kutepova N. A., Vasileva А. D., Mukhina A. S. Engineering-geological and ecological concerns in operation and reclamation of high slope dumps at open-pit mines in Kuzbass. GIAB. 2021. No. 8. pp. 164–178.
3. Petrova T. A., Astapenko T. S., Kologrivko A. A., Esman N. M. Reducing the geoenvironmental impact of halite waste storage. GIAB. 2022. No. 10-1. pp. 155–162. DOI: 10.25018/0236_1493_2022_101_0_155
4. Fisenko G. L. Slope stability of pit walls and dumps. 2nd enlarged and revised edition. Moscow : Nedra, 1965. 378 p.
5. Read J., Stacey P. Guidelines for open pit slope design. Collingwood : CSIRO Publishing, 2009. 487 p.
6. Zhabko A. V. A New concept of slope stability design. GIAB. 2022. No. 10. pp. 104–124.
7. Glazunov V. V., Burlutsky S. B., Shuvalova R. A., Zhdanov S. V. Improving the reliability of 3D modelling of a landslide slope based on engineering geophysics data. Journal of Mining Institute. 2022. Vol. 257. pp. 771–782.
8. Hawley M., Cunning J. (Eds.). Guidelines for Mine Waste Dump and Stockpile Design. Leiden : CRC Press/Balkema, 2017. 370 p.
9. Ter-Martirosyan Z. G., Mirnyi A. Yu. Dependence of mechanical properties on nonuniformity of soils. Inzhenernaya geologiya. 2013. No. 4. pp. 60–67.
10. Laptev Yu. V. Geometrization of strong rock segregation by coarseness in dumping : Theses of Dissertation of Doctor of Engineering Sciences. Ekaterinburg, 2007. 44 p.
11. Kutepova N. A., Moseykin V. V., Kondakova V. N., Pospekhov G. B., Straupnik I. A. Specificity of properties of coal processing waste regarding their storage. GIAB. 2022. No. 12. pp. 77–93.
12. Kondakova V. N., Pospekhov G. B. Influence of specific properties of manmade ground on piling parameters. New Ideas in Geosciences : XIV International Conference Headnotes. Moscow : Izdatelstvo RGGRU im. S. Ordzhonikidze, 2019. Vol. 3. pp. 139–141.
13. Kutepov Yu. I., Kutepova N. A., Vasileva А. D. External dump stability substantiation and monitoring in Kuzbass. GIAB. 2019. No. 4. pp. 109–120.
14. Radchenko G. A. Natural segregation of dumped stone materials. Hydrotechnical Construction. 1967. Vol. 1, Iss. 5. pp. 431–435.
15. Morozov M. G. Use of segregation effect of industrial waste toward ecological and technological efficiency of mining : Theses of Dissertation of Candidate of Engineering Sciences. Ekaterinburg, 1998. 27 p.
16. Kustov V. V. Using the regularities of the segregation of rock overburden on the dump slope to increase the competence of man-made embankment. Pozharnaya i tekhnosfernaya bezopasnost: problemy i puti sovershenstvovaniya. 2019. No. 2(3). pp. 131–138.
17. Molina S. L., Bradfield L., Fityus S. G., Simmons J. V., Lizcano A. Design of a 720-mm Square Direct Shear Box and Investigation of the Impact of Boundary Conditions on Large-Scale Measured Strength. Geotechnical Testing Journal. 2020. Vol. 43, Iss. 6. DOI: 10.1520/GTJ20190344
18. Popov V. N., Nesmeyanov B. V., Popov S. V. Strong rock dump stability : Tutorial. Moscow : Gornaya kniga, 2010. 122 p.
19. Boos I. Yu., Patachkov I. V., Latypov V. D., Rudenko E. A., Aktelova A. Yu. et al. Determination of physical and mechanical c haracteristics (ρ and k) аnd estimation of stability of dump mass on results of natural tests in the conditions of Gorevsky deposit. Moskovskiy ekonomicheskiy zhurnal. 2020. No. 4. pp. 54–65.
20. Akram Deiminiat, Li Li, Feitao Zeng, Pabst T., Chiasson P. et al. Determination of the Shear Strength of Rockfill from Small-Scale Laboratory Shear Tests: A Critical Review. Hindawi Advances in Civil Engineering. 2020. Vol. 2020. ID 8890237. DOI: 10.1155/2020/8890237
21. Kutepova N. A., Kutepov Yu. I., Kudashov E. S., Daniliev S. M. Strength of phosphogypsum mixed with nepheline slime in construction of embankments of gypsum ponds. GIAB. 2020. No. 10. pp. 67–78. DOI: 10.25018/0236-1493-2020-10-0-67-78
22. Akishev A. N., Bokiy I. B., Zoteev O. V., Zolotin V. G. Parameters of external dump formation at open pit mines of Nyurbinsky MPp. Fundamentalnye i prikladnye voprosy gornykh nauk. 2021. Vol. 8, No. 1. pp. 218–224.
23. Bakhaeva S. P., Tur K. A., Ilyushkin V. D. Geomechanical substantiation of the dump stability during joint storage of overburden sandy-clayey rocks and beneficiation waste. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2020. No. 4. pp. 49–59.
24. Azéma E., Linero S., Estrada N., Lizcano A. Shear strength and microstructure of polydisperse packings: The effect of size span and shape of particle size distribution. Physical Review. 2017. Vol. 96, Iss. 2. 022902. DOI: 10.1103/PhysRevE.96.022902

25. Linero S., Fityus S., Simmons J. V., Azéma E., Estrada N. et al. Influence of particle sizeshape correlation on the shear strength of scaled samples of coarse mine waste. Slope Stability 2020 : Proceedings of the 2020 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering. Perth, 2020. pp. 667–676.
26. Azéma E., Linero S., Estrada N., Lizcano A. Does modifying the particle size distribution of a granular material (i.e., material scalping) alters its shear strength? Powders and Grains 2017 : Proceedings of the 8th International Conference on Micromechanics on Granular Media. 2017. EPJ Web of Conferences. 2017. Vol. 140. 06001. DOI: 10.1051/epjconf/201714006001
27. Molina S. L., Azéma E., Estrada N., Fityus S., Simmons J. et al. Impact of grading on steady-state strength. Géotechnique Letters. 2019. Vol. 9, Iss. 4. pp. 328–333.
28. Shabaev S. N. Influence of the size of uniformly graded bulk media particles on strength characteristics. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G. I. Nosova. 2020. Vol. 18, No. 2. pp. 62–70.
29. Saadoun A., Fredj M., Boukarm R., Hadji R. Fragmentation analysis using digital image processing and empirical model (KuzRam): a comparative study. Journal of Mining Institute. 2022. Vol. 257 . pp. 822–832.
30. Pomortseva A. A., Karasev M. A., Pospekhov G. B. Engineering and geological support of the stability of the heap leach pad. Uspekhi sovremennogo estestvoznaniya. 2021. No. 1. pp. 63–69.
31. Novozhenin S. Yu., Mitusova N. M. Slope stability estimation of pitwall and dumps by mathematical modeling in Plaxis 3D. Marksheyderskiy vestnik. 2022. No. 1(146). pp. 33–38.
32. Zuev B. Yu. Methodology of modeling nonlinear geomechanical processes in blocky and layered rock masses on models made of equivalent materials. Journal of Mining Institute. 2021. Vol. 250. pp. 542–552.
33. Leps T. M. Review of shearing strength of rockfill. Journal of Soil Mechanics and Foundation Division. 1970. Vol. 96, No. SM4. pp. 1159–1170.
34. Linero S., Palma C., Apablaza R. Geotechnical Characterisation of Waste Material in Very High Dumps with Large Scale Triaxial Testing. Slope Stability 2007 : Proceedings of the 2007 International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering. Perth, 2007. p. 59–75.
35. Ovalle C., Linero S., Dano C., Bard E., Hicher P. -Y. et al. Data Compilation from Large Drained Compression Triaxial Tests on Coar se Crushable Rockfill Materials. Journal of Geotechnical and Geoenvironmental Engineering. 2020. Vol. 146, Iss. 9. 06020013. DOI: 10.1061/(ASCE)GT.1943-5606.0002314
36. Naimova R. Sh., Raimzhanov B. R. Process flow chart for high dumping by stacking conveyors on nonuniform base. GIAB. 2020. No. 9. pp. 125–136.
37. Protosenya A.G., Kutepov Yu.Yu. Stability estimation of hydraulic fills in undermined areas. GIAB. 2019. No. 3. pp. 97–112. DOI: 10.25018/0236-1493-2019-03-0-97-112

Full content Determination of strength properties for slope stability estimate in dumps