Journals →  Obogashchenie Rud →  2023 →  #2 →  Back

Foreign experience
ArticleName On the development of research in the field of deep processing of oxidized nickel ores of the Republic of Cuba
DOI 10.17580/or.2023.02.07
ArticleAuthor Breff Alberto Turro, Karell Fure Barbara Elena, Nikolaev A. K., Bazhin V. Yu.

Ministry of Higher Education (Havana, Republic of Cuba):

Breff Alberto Turro, Head of the Innovation Development Sector, Candidate of Engineering Sciences
Karell Fure Barbara Elena, Adviser on International Relations, Candidate of Philological Sciences, Professor


St. Petersburg Mining University (Saint Petersburg, Russia):
Nikolaev A. K., Professor, Doctor of Engineering Sciences, Professor
Bazhin V. Yu., Head of Chair, Doctor of Engineering Sciences, Professor,


This article analyzes the existing and promising laterite deposits in the Republic of Cuba containing large amounts of nickel and cobalt in the form of oxide complexes. The paper provides an overview of the existing Cuban enterprises and describes specific features of the current concentration and processing projects targeting ores and technogenic waste. Problems are discussed associated with the introduction of the most efficient processing methods, such as flotation, along with various technologies for obtaining nickel and cobalt concentrates. Operation of the existing production facilities of the Republic of Cuba is analyzed, specific recommendations are given by the Russian specialists, current information is provided on the new projects to develop the nickel industry. Feasible methods of associated recovery of platinum group elements and lanthanides from ores and sludge wastes are considered. The analysis of production data has revealed that preliminary concentration with subsequent flotation is the most expedient processing method that reduces the production costs to a competitive level and does not require any major reconstruction of the metallurgical shops. The relevance of joint Cuban-Russian research is substantiated, aimed at the development of a resource-saving technology for the recovery of nickel and cobalt from laterites that could be used to manufacture commercial electrorefining products and to solve the related environmental problems. The issues of personnel training in mining and metallurgy for the Republic of Cuba are also covered.

keywords Laterite ore, processing, nickel-cobalt concentrate, sludge, magnetic separation, concentration, sinter

1. Litvinenko V. S., Tsvetkov P. S., Molodtsov K. V. The social and market mechanism of sustainable development of public companies in the mineral resource sector. Eurasian Mining. 2020. No.1. pp. 36–41. DOI: 10.17580/em.2020.01.07
2. Litvinenko V. S., Bowbrick I., Naumov I. A., Zaitseva Z. Global guidelines and requirements for professional competencies of natural resource extraction engineers: Implications for ESG principles and sustainable development goals. Journal of Cleaner Production. 2022. Vol. 338. DOI: 10.1016/j.jclepro.2022.130530

3. Sokolov A. R., Afanasyev V. G., Kravtsov A. T., Lozhkina L. G., Nikitina S. O., et al. The history of the creation and development of the Saint Petersburg State Mining Institute: 1773–1998. St. Petersburg: Media Market, 1998. Vol. 1. 191 p.
4. Nikolayev A. K., Nikolayev V. I., Andreyev Ye. Ye., Bazhin V. Yu., Piligrim M. Dressability assessment of Cuban oxidized nickel-cobalt ores and slime wastes. Obogashchenie Rud. 2013. No. 4. pp. 13–16.
5. Litvinenko V. S., Petrov E. I., Vasilevskaya D. V., Yakovenko A. V., Naumov I. A., Ratnikov M. A. Assessment of the role of the state in the management of mineral resources. Zapiski Gornogo Instituta. 2023. Vol. 259. pp. 95–111.
6. Duryagina A. M., Talovina I. V., Lieberwirth H., Ilalova R. K. Morphometric parameters of sulphide ores as a basis for selective ore dressing. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 527–538.
7. Рiсоn J. R. Cuba industry. Reports of Сuban Research Institute. 2010. Vоl. 1., No. 1. pp. 2–8.
8. Nickel and cobalt production. Information and technical handbook on the best available technologies. Moscow: Bureau of STD, 2018. 129 p.
9. Reznik I. D., Ermakov G. P., Schneerson Ya. M. Nickel. Moscow: Science and Technology LLC, 2000. 345 p.
10. Srecko Stopic, Bernd Friedrich. Hydrometallurgical processing of nickel lateritic ores. Military Technical Courier. 2016. Vol. 64, Iss. 4. pp. 1033–1047.
11. Dalvi A. D., Bacon W. G., Osborne R. C. The past and the future of nickel laterites. PDAC 2004. International conference, trade show and investors exchange. Toronto, 7–10 March 2004. 27 p.
12. Gospodarikov A. P., Trofimov A. V., Kirkin A. P. Evaluation of deformation characteristics of brittle rocks beyond the limit of strength in the mode of uniaxial servohydraulic loading. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 539–548.
13. Nickel industry: the current state of the industry (Part 1). Metallurgicheskiy byulleten'. March 2023. URL: (accessed: 03.04.2023).
14. Petrov G. V., Boduen A. Ya., Bazhin V. Yu., Fokina S. B. Upon platinum group metals recovery from Cuban oxide nickel ores. Obogashchenie Rud. 2013. No. 2. pp. 45–56.
15. Rojas-Puron A. L., Turro B. A. Composicion mineralogica de las colas del proceso CARON en Moa. Mineria y Geologia. 2003. Vol. 3–4. pp. 21–28.
16. Pupo R. I. Influence of laterite hydrotransport parameters on the deposition process. Zapiski Gornogo Instituta. 1987. Vol. 110. pp. 98–100.
17. Izquerdo P. R. Hidrotransporte del mineral lateriticoen regimen structural. Mineria y Geologia. 2001. Vol. 18, No. 2. pp. 53–59.
18. Manuel Vega, Tarasov Yu. D., Nikolaev A. K., Manuel Suarez. Hydro-mechanized complex for the development of laterite ores at the Moa–Nicaro quarries. Gornoye Oborudovanie i Elektromekhanika. 2006. No. 3. pp. 12–13.
19. Aleksandrova T. N. Сomplex and deep processing of mineral raw materials of natural and technogenic origin: state and prospects. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 3–5.
20. Sirotkin A. N., Talovina I. V., Duryagina A. M. Mineralogy and geochemistry of alkaline lamprophyres of northwestern Spitsbergen (Svalbard). Chemie der Erde. 2020. Vol. 3, No. 80. pp. 10–19.
21. Naboychenko S. S., Schneerson Ya. M. Autoclave hydrometallurgy of non-ferrous metals. Ekaterinburg: USTU–UPI, 2009. Vol. 2. 611 p.
22. Li G. H., Shi T. M., Rao M. J., Jiang T. Beneficiation of nickeliferous laterite by reduction roasting in the presence of sodium sulfate. Minerals Engineering. 2012. Vol. 32. pp. 19–26.
23. Lakshmanan Vaikuntam Iyer, Raja Roy, Ramachandran V. Innovative process development in metallurgical industry. Cham: Springer, 2016. 440 p.
24. Leong Y. K., Boger D. V. Surface chemistry effects on concentrated suspension rheology. Journal of Colloid and Interface Science. 1990. Vol. 136, Iss. 1. pp. 249–258.
25. Petrov G. V., Greiver T. N., Lazarenkov V. G. The current state and technological prospects of platinum metals production in the processing of chromite ores. St. Petersburg: Nedra, 2001. 200 p.
26. Lazarenkov V. G., Talovina I. V., Beloglazov I. N., Volodin V. I. Platinum metals in hypergenic nickel deposits and prospects for their industrial extraction. Moscow: Nedra, 2006. 188 p.
27. Perez L., Garcell L. Efecto de la granulometria y de las propiedades superficiales sobre la reologia de suspensiones concentradas de laterita. Technologia Quimica. 2006. Vol. XXVI, No. 1. pp. 40–47.
28. Cempel M. Nickel: A review of its sources and environmental toxicology. Polish Journal of Environmental Studies. 2006. Vol. 15, No. 3. pp. 375–382.
29. Popov O. A., Talovina I. V., Lieberwirth H., Duryagina A. M. Quantitative microstructural analysis and X-ray computed tomography of ores and rocks — comparison of results. Minerals. 2020. Vol. 2, Iss. 10. DOI: 10.3390/min10020129
30. Crundwell F. K., Moats M. S., Venkoba Ramachandran, Robinson T. G., Davenport W. G. Separation of nickel and cobalt by solvent extraction. Extractive metallurgy of nickel, cobalt and platinum group metals. Elsevier, 2011. pp. 315–326.

Language of full-text russian
Full content Buy