Журналы →  Obogashchenie Rud →  2023 →  №2 →  Назад

Название Metal balances at concentrators
DOI 10.17580/or.2023.02.02
Автор Kozin V. Z., Komlev A. S.
Информация об авторе

Ural State Mining University (Ekaterinburg, Russia):
Kozin V. Z., Head of Chair, Doctor of Engineering Sciences, Professor, gmf.dek@ursmu.ru
Komlev A. S., Senior Researcher, Candidate of Engineering Sciences, tails2002@inbox.ru


Metal balances are recorded at all concentrators. In actual practice, plants use adjusted balances with zero discrepancies in metal quantities, but never use the product balance as a tool for assessing plant performance in terms of its output and metal flows. This article provides a general formula for the discrepancies in the product balance, as well as formulas for calculating metal masses and relative random errors. A relative random error formula for the discrepancies is also given, covering the relative random errors in establishing metal masses in all plant’s products. The paper provides a detailed example of compiling and calculating product balance discrepancies at a copper-zinc processing plant for four metals. A list of initial documents required for compiling the balance is indicated, a summary table is given for the receipt, release, and accumulation of all metals at the plant. An example calculation of allowable discrepancies is given for the metals under consideration. The causes for the large allowable discrepancies are indicated, being the error of indirect concentrate weighing at storage for zinc and balance calculation based on accumulated ten-day samples for gold and silver. The actual discrepancy exceeds the permissible absolute value only for copper. It has been shown that the plant needs to check for unaccounted mechanical losses and to improve sampling by the mass fraction of moisture in the ore and in the concentrates stored. General recommendations are proposed on the use of product balances to improve metal sampling and accounting systems at concentrating plants.
The study was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation No. 0833-2023-0004 in accordance with the state assignment for the Ural State Mining University.

Ключевые слова Product balance, metal balance, discrepancy, allowable discrepancy, copper losses, sampling errors, weighing errors, product balance adjustment
Библиографический список

1. Bondarenko A. V., Karamyshev N. I., Trushin A. A., Katsman Ya. M. Calculation of metals balance as an element of process control system of concentration plant. Gornyi Zhurnal. 2014. No. 11. pp. 100–104.
2. Glazatov A. N., Lunev V. Yu., Parievskiy E. V., Danchenko E. V. Experimental validation of ore testing results at Talnakh Concentrator. Tsvetnye Metally. 2022. No. 2. pp. 78–86. DOI: 10.17580/tsm.2022.02.10
3. Beriashvili A. T., Pikulina V. M. A new approach to solving the problem of variable copper recovery on the example of the Zhezkazgan ore field. Obogashchenie Rud. 2018. No. 5. pp. 40–44. DOI: 10.17580/or.2018.05.07
4. Glazatov A. N., Molodtsev M. S., Kazakov A. M., Brazyulis L. A. Optimized product quality control at Kola MMC’s mineral processing plant. Tsvetnye Metally. 2020. No. 12. pp. 88–93. DOI: 10.17580/tsm.2020.12.13
5. Temerbekova B. M. Application of systematic error detection method to integral parameter measurements in sophisticated production processes and operations. Tsvetnye Metally. 2022. No. 5. pp. 79–86. DOI: 10.17580/tsm.2022.05.11
6. Lapaev I. I., Polovnikov V. E., Konstantinov A. M., Belyanin V. E. Petroleum coke calcination in rotary kilns: material balance of the process. Tsvetnye Metally. 2020. No. 3. pp. 56–62. DOI: 10.17580/tsm.2020.03.08
7. Batov A. A., Zadvorny V. A., Golubev D. G., Khavalits S. D. Ensuring the safety of products of Kola MMC JSC containing non-ferrous and precious metals. Tsvetnye Metally. 2020. No. 8. pp. 41–45.
8. Engströrn K., Esbensen K. H. Evaluation of sampling systems in iron concentrating and pelletizing processes – Quantification of Total Sampling Error (TSE) vs. process variation. Minerals Engineering. 2018. Vol. 116. pp. 203–208.
9. Measurement uncertainty arising from sampling: A guide to methods and approaches. Eds Ramsey M. H., Ellison S. L. R., Rostron P. 2nd ed. Eurachem, 2019. p. 109.
10. Batraliev R. Sh., Okhrimenko A. V., Turtygina N. A. Conceptual structure of on-line information and control system toward stabilization of ore flow quality. Gornyi Zhurnal. 2022. No. 10. pp. 91–96. DOI: 10.17580/gzh.2022.10.14
11. Kozin V. Z., Komlev A. S. Determination of variation coefficients of a mass part of components in concentration products. Obogashchenie Rud. 2019. No. 1. pp. 28–33. DOI: 10.17580/or.2019.01.04
12. Kejonen I., Haavisto O., Martikainen J., Suontaka V., Musuku B. Improving grade control efficiency with rapid online elemental analysis. Mineral Engineering. 2018. Vol. 124. pp. 68–73.
13. Kudryavtsev V. Yu., Galass T. Yu., Stepanova I. S., Drobyshev A. A. Product quality control as a tool of competitive recovery of Lebedinsky GOK. Gornyi Zhurnal. 2022. No. 6. pp. 49–53. DOI: 10.17580/gzh.2022.06.05
14. Lyapin A. G. Innovations in technical control. Gornyi Zhurnal. 2019. No. 7. pp. 30–31.
15. Kozin V. Z. Testing of mineral raw materials. Ekaterinburg: URSMU Publishing House, 2011. 316 p.
16. Napier-Munn T. J., Whiten W. J., Faramarzi F. Bias in manual sampling of rock particles. Minerals Engineering. 2020. Vol. 153. DOI: 10.1016/j.mineng.2020.106260
17. Rozendal A., Le Rous S. G., du Plessis A., Philander C. Grade and product quality control by microCT scanning of the world class Namakwa Sands Ti-Zr placer deposit West Coast, South Africa: An orientation study. Minerals Engineering. 2017. Vol. 116. pp. 152–162.
18. Komlev A. S. Combined method of sampling and reduction of samples of mineral products. Ekaterinburg: Fort Dialog-Iset' Publishing House, 2020. 216 p.

Language of full-text русский
Полный текст статьи Получить