Журналы →  Gornyi Zhurnal →  2023 →  №3 →  Назад

GEOLOGY, SEARCH AND EXPLORATION OF MINERALS
Название Fractality parameters and self-similarity of ore mineralization and its subsystems
DOI 10.17580/gzh.2023.03.04
Автор Nazaraliev B. A., Yarovoy N. V., Mezhelovsky V. I., Korobovsky N. V.
Информация об авторе

Global Asia Management, Almaty, Kazakhstan:

B. A. Nazaraliev, Chief Geologist, bnazaraliev@mail.ru

 

Besh-Archa, Osh, Kirgizia:

N. V. Yarovoy, CEO

 

Global Shiraldzyn Mining, Bishkek, Kirgizia:

V. I. Mezhelovsky, CEO

 

Gornyi Klyuch, Moscow, Russia:

N. V. Korobovsky, Chairman of the Board of Directors

Реферат

The found patterns of gold and ore contents, and ore clusters within the proven ore bodies at Dzhamgyr deposit were used in reserves appraisal by the analogy method. The aim of the study was the detailed geologic al presentation of the mineralization. The scope of the study embraced discontinuity of the mineralization and characteristics of the ore blocks–subsystems starting from ore shoots and up to bonanza ore deposits. The fractal dimension as an index of complexity of gold distribution per discontinuities in an ore body allows delineating ore concentrations based on a scaled hierarchy, with classing of the concentrations and with regard to the barren off-grade rock intervals. The system of the fractal structure and dimension makes it possible to develop an evaluation procedure for undiscovered potential resources for the undrilled and underexplored lodes of Dzhamgyr deposit—the analogy method. The application of the fractal dimension in the analogy method in the appraisal of new ore bodies can be based on the snippety data on a few ordinary exploration junctions. Solving of an inverse problem on an individual crosssection with the maximal content or a class of contents in terms of the fractal dimension enables a hierarchic presentation of classes (lenses and nests) starting from the top ranks and downward, with calculation of an average content. The analogy method based on the self-similarity of mineralization systems offers a correct tool for prospecting and exploration of a deposit and an ore field.
The authors appreciate participation of Mining Engineer–Geologist K. Z. Kurmanaliev and Geotechnical Engineering Consultant, Doctor of Physics and Mathematics, Professor V. A. Mansurov from Vertex Gold Company in this research.

Ключевые слова Gold ore deposit, ore body, ore shoot, commercial reserves, self-similarity, mineralization, exponential hierarchy, fractality
Библиографический список

1. Filonyuk V. A., Dubovskaya I. A. On some reasons of low efficiency of geological and methodological support of modern prospecting, exploration and operation technologies in gold industry. Izvestiya Sibirskogo otdeleniya RAEN. Geologiya, razvedka i razrabotka poleznykh iskopaemykh. 2016. No. 3(56). pp. 29–43.
2. Dzhumanbaev V. V., Kurmanaliev K. Z., Mansurov V. A., Babkin E. A. Optimization of geological and economic-geological evaluation of Dzhamgyr mining project. Gornyi Zhurnal. 2021. No. 1. pp. 115–119. DOI: 10.17580/gzh.2021.01.20
3. Vasilev N. Yu., Mostryukov A. O., Petrov V. A., Tverinova T. Yu., Tverinov A. Yu. Parameters of direct connection between endogenous orogeny and volumetric softening of rocks controlled by tectonic reverse faulting (by reconstructions of regional and local stress fields). Basic Problems of Geodynamics and Tectonics : LII Tectonic Conference Proceedings. Moscow : GEOS, 2020. Vol. 1. pp. 118–124.
4. Goryainov P. M., Ivanyuk G. Yu. Self-organization of mineral systems. Synergy concept of geological research. Moscow : GEOS, 2001. 311 p.
5. Lai Simin, Wan Li, Zeng Xiangjian. Fluctuation analysis to sequence of ore-forming element based on fractal-jump model. International Journal on Data Science and Technology. 2019. Vol. 5, Iss. 1. pp. 29–34.
6. Lukk A. A., Deshcherevskiy A. V., Sidorin A. Ya., Sidorim I. A. Geophysical fields’ variations as deterministic chaos demonstration in fractal medium. Moscow : OIFZ RAN, 1996. 200 p.
7. Pavlov A.M. The fractal properties of the geological environment as the factor of the complexity of the conditions of exploitation of gold deposits. GIAB. 2011. No. 6. pp. 60–66.
8. Snetkov V. I. Fractal analysis as a key element of mineral deposit geometrization. Izvestiya Sibirskogo otdeleniya RAEN. Geologiya, razvedka i razrabotka poleznykh iskopaemykh. 2018. Vol. 41, No. 3. pp. 106–118.
9. Kantsel A. V. Function of metal distribution in ore as a genetic characteristic of an ore formation process. Izvestiya akademii nauk SSSR. Seriya geologicheskaya. 1988. No. 10. pp. 18–30.
10. Kallistov P. L, Kamyshev Yu. I. On the problem of sample stowings equalization in reserves assessment for deposits with high mineralization variability. TSNIGRI’s Transactions. Moscow : TsNIGRI, 1978. Vol. 128. pp. 68–94.
11. Lobach V. I., Ivanov V. N. Method to identify a structural–concentration inhomogeneity at ore deposits. Moscow : MGTsNTI, 1986.
12. Los V. L. Statistic distribution of contents of basic minerals at some deposits of nonferrous and noble metals in Kazakhstan. Novosibirsk : IGiG SO RAN SSSR, 1972. 148 p.
13. Narseev V. A., Levin G. B., Los V. L. Distribution of useful component contents, levels of mineralization and ore shoots. Problems of Ore Shooting : Symposium Proceedings. Novosibirsk : Nauka, 1969. pp. 34–38.
14. Zhihong Zhang, Fan Yang, Yanyan Li. An optimized method based on fractal theory to calculate particle size distribution. Geomechanics and Engineering. 2021. Vol. 27, No. 4. pp. 323–331.
15. Narseev V. A., Levin G. B., Los V. L. To definition of term of an ore shoot. Gold Deposit Geology : Proceedings of II Conference on Gold Deposits in Siberia. Tomsk : Izdatelstvo Tomskogo universiteta, 1970. pp. 289–291.
16. Rasskazova A. V., Sekisov A. G., Kirilchuk A. G., Vasyanovich Yu. A. Stage-activation leaching of oxidized copper–gold ore: Theory and technology. Eurasian Mining. 2020. No. 1. pp. 52–55. DOI: 10.17580/em.2020.01.10
17. Fedotov P. K., Senchenko A. E., Fedotov K. V., Burdonov A. E. Dressability study for polymetallic ore deposits of the Zabaikalye Territory. Obogashchenie Rud. 2019. No. 3. pp. 3–10. DOI: 10.17580/or.2019.03.01
18. Darabi-Golestan F., Hezarkhani A. Evaluation of elemental mineralization rank using fractal and multivariate techniques and improving the performance by log-ratio transformation. Journal of Geochemical Exploration. 2018. Vol. 189. pp. 11–24.
19. Brickey A., Chowdu A., Newman A., Goycoolea M., Godard R. Barrick’s Turquoise Ridge Gold Mine Optimizes Underground Production Scheduling Operations. INFORMS Journal on Applied Analytics. 2020. Vol. 51, No. 2. pp. 106–118.
20. Kulkova M. S., Zemtsovsky A. V. Optimizing parameters of stopes and pillars for the
Zhdanov deposit mining. Eurasian Mining. 2019. No. 1. pp. 13–15. DOI: 10.17580/em.2019.01.03
21. Mandelbrot B. B. The Fractal Geometry of Nature. New York : W. H. Freeman and Company, 1983. 468 p.
22. Feder J. Fractals. New York : Plenum Press, 1988. 257 p.
23. Schroeder M. R. Fractals, Chaos, Power Laws. Minutes from an Infinite Paradise. New York : W. H. Freeman and Company, 2001. 454 p.
24. Turcotte D. L. Fractals and Chaos in Geology and Geophysics. 2nd ed. Cambridge : Cambridge University Press, 1997. 378 p.

Language of full-text русский
Полный текст статьи Получить
Назад