Журналы →  Obogashchenie Rud →  2023 →  №1 →  Назад

Название Research into regularities in segregation of iron ore raw materials on screw devices using numerical simulation
DOI 10.17580/or.2023.01.04
Автор Khokhulya M. S., Fomin A. V.
Информация об авторе

Mining Institute, Kola Science Centre of the RAS (Apatity, Russia):
Khokhulya M. S., Leading Researcher, Candidate of Engineering Sciences, m.hohulya@ksc.ru
Fomin A. V., Researcher, fomin5-49@mail.ru


The effect of segregation of mineral particles is one of the essential mechanisms in a number of gravity separation methods, including spiral separation. Research into this phenomenon therefore plays a significant role in studying the regularities in ore and material separation in spiral separators. The regularities of spiral separation have not been sufficiently studied to date, despite the fact that this process has long been used in processing technologies. Numerical simulations based on the mathematical methods of computational fluid dynamics were used to study the regularities in iron ore segregation in spiral separators of various designs. It has been shown that density-based segregation of mineral particles occurs along the height of the suspension flow, where particles with the highest density accumulate in the bottom layer. The authors propose a method for quantifying segregation in thin helical flows based on the use of a numerical model of the spiral separation process, as well as the Hancock–Luyken separation efficiency criterion. It has been established that the use of spiral separators with a cross-sectional profile in the form of a slightly inclined curve promotes intensified segregation of hematitecontaining mineral raw materials generated in the processing of ferruginous quartzites of the Zaimandrovskaya group of deposits. It has been found that segregation efficiency in spiral separators for this material increases with higher solids content in the initial feed. The paper also shows the dependence between the segregation efficiency and the number of turns of the spiral separator.

Ключевые слова Gravity concentration, spiral separation, numerical modeling, computational fluid dynamics, segregation, ferruginous quartzites, hematite
Библиографический список

1. Kizevalter B. V. Theoretical foundations of gravitational processes. Moscow: Nedra, 1979. 296 p.
2. Bochkovsky V. M. Delamination as the most important section of the theory and practice of gravity. Gornyi Zhurnal. 1954. No. 1. pp. 47–55.
3. Polkin S. I. Ore beneficiation. Moscow: State Scientific and Technical Publishing House of Literature on Ferrous and Non-ferrous Metallurgy, 1953. 289 p.
4. Isaev I. N. Concentration tables. Moscow: GNTI, 1962. 100 p.
5. Ivanov V. D., Prokopyev S. A. Screw devices for ore and sand beneficiation in Russia. Moscow: Publishing House «Daxi», 2000. 240 p.
6. Bogdanovich A. V. Intensification of gravitational beneficiation processes in centrifugal fields. Obogashchenie Rud. 1999. No. 1–2. pp. 33–35.
7. Bogdanovich А. V., Vasilyev А. М. Study of operation of gravity separators designed to concentrate fine-grained materials. Obogashchenie Rud. 2005. No. 1. pp. 12–15.
8. Bogdanovich A. V., Petrov S. V. Comparative tests of centrifugal concentrators of various types. Obogashchenie Rud. 2001. No. 3. pp. 38–41.
9. Vasilyev A. M. Investigation of the influence of water viscosity factors and the phenomenon of segregation on the indicators of mineral beneficiation. Zapiski Gornogo Instituta. 2006. Vol. 169. pp. 97–100.
10. Vasilyev A. M. Segregation of fine-grained material during gravity beneficiation. Zapiski Gornogo Instituta. 2006. Vol. 167. pp. 207–209.
11. Vasilyev A. M. Theoretical aspects of the phenomenon of interlayer segregation. Zapiski Gornogo Instituta. 2006. Vol. 169. pp. 93–96.
12. Fletcher D. F., Doroodchi E., Galvin K. P. The influence of inclined plates on expansion behaviour of solid suspensions in a liquid fluidised bed — А computational fluid dynamics study. Powder Technology. 2005. Vol. 156, Iss. 1. pp. 20–26.
13. Xia Y., Peng F. F. Effect of structured plates on fine coal gravity separation in a liquid fluidized bed system. Engineering Applications of Computational Fluid Mechanics. 2007. Vol. 1, Iss. 3. pp. 164–180.
14. Perepelkin M. A., Semykin E. S., Miroshnikova L. K., Ufatova Z. G. Modeling centrifugal separation process of mineral particles in gravity field using finite element method. Gornaya Promyshlennost'. 2022. No. 1. pp. 128–132.
15. Raziyeh S., Ataallah S. G. CFD simulation of an industrial hydrocyclone with Eulerian–Eulerian approach: A case study. International Journal of Mining Science and Technology. 2014. Vol. 24, Iss. 5. pp. 643–648.
16. Vakamalla T. R., Mangadoddy N. Comprehensive dense slurry CFD model for performance evaluation of industrial hydrocyclones. Industrial and Engineering Chemistry Research. 2021. Vol. 60, Iss. 33. pp. 12403–12418.
17. Aleksandrova T. N., Potemkin V. A. Development of a methodology to assess the hydrocyclone process with account of the rheological properties of the mineral slurry. Zapiski Gornogo Instituta. 2021. Vol. 252. pp. 908–916.
18. Doheim M. A., Abdel Gawad A. F., Mahran G. M. A., Abu-Ali M. H., Rizk A. M. Numerical simulation of particulateflow in spiral separators: Part I. Low solids concentration (0.3% & 3% solids). Applied Mathematical Modelling. 2013. Vol. 37, Iss. 1–2. pp. 198–215.
19. Matthews B. W., Fletcher C. A., Partridge T. C. Particle flow modelling on spiral concentrators: benefits of dense media for coal processing. Proc. of 2nd International conference on CFD in the mineral and process industries CSIRO, Melbourne, Australia, 6–8 December 1999. pp. 211–216.
20. Mishra B. K., Tripathy A. A preliminary study of particle separation in spiral concentrators using DEM. International Journal of Mineral Processing. 2010. Vol. 94. pp. 192–195.
21. Sudikondala P., Mangadoddy N., Kumar M., Tripathy S. K., Yanamandra R. M. CFD modelling of spiral concentrator — prediction of comprehensive fluid flow field and particle segregation. Minerals Engineering. 2022. Vol. 183. DOI: 10.1016/j.mineng.2022.107570
22. Pedlosky J. Geophysical fluid dynamics. New York: Springer, 1987. 710 p.
23. Batchelor G. K. An introduction to fluid dynamics. Cambridge: Cambridge University Press, 1967. 658 p.
24. Nigmatulin R. I. Fundamentals of mechanics of heterogeneous media. Moscow: Nauka, 1978. 336 p.
25. Versteeg H., Malalasekera W. An introduction to computational fluid dynamics: The finite volume method. Harlow: Pearson Education, 2007. 503 p.
26. Gosman A. D., Ioannides E. Aspects of computer simulation of liquid-fuelled combustors. Journal of Energy. 1983. Vol. 7, Iss. 6. pp. 482–490.
27. Cundall P. A., Strack O. D. L. A discrete numerical model for granular assemblies. Geotechnique. 1979. Vol. 29. pp. 47–65.
28. Fomin A. V., Khokhulya M. S. Improving efficiency of gravity separation of fine iron ore materials using computer modeling. Topical issues of rational use of natural resources. Vol. 2. London: CRC Press, 2019. pp. 509–516.
29. Skorokhodov V. F., Khokhulya M. S., Opalev A. S., Fomin A. V., Biryukov V. V., Nikitin R. M. Applications of computer simulation for hydrodynamics of multiphase media in studying separation processes in mineral dressing. Fizikotekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2019. No. 2. pp. 139–153.
30. Khokhulya M. S., Fomin A. V. The use of computational fluid dynamics methods in the gravity separation of various mineral raw materials. Gorny Informatsionno-analiticheskiy Byulleten'. 2017. No. S23. pp. 474–482.
31. Skorokhodov V. F., Khokhulya M. S., Fomin A. V., Nikitin R. M. The use of computer models of separators for the performance evaluation of mineral processing. Gornyi Zhurnal. 2020. No. 3. pp. 50–55. DOI: 10.17580/gzh.2020.03.09.
32. Gray J. M. N. T. Particle segregation in dense granular flows. Annual Review of Fluid Mechanics. 2018. Vol. 50. pp. 407–433.
33. Reference book on beneficiation of ores. Vol. 2. Basic processes. Ed. 2. Moscow: Nedra, 1983. 381 p.

Language of full-text русский
Полный текст статьи Получить