Journals →  Tsvetnye Metally →  2023 →  #1 →  Back

ArticleName Full factorial design model applied for understanding the dissolution kinetics of iron being a part of arsenopyrite
DOI 10.17580/tsm.2023.01.04
ArticleAuthor Kuzas E. A., Karimov K. A., Rogozhnikov D. A.

Laboratory of Advanced Technologies in Non-ferrous and Ferrous Metals Raw Materials Processing at the Institute of New Materials and Technologies, Ural Federal University named after the First President of Russia B. N. Yeltsin, Yekaterinburg, Russia:

E. A. Kuzas, Senior Researcher, Candidate of Technical Sciences, e-mail:
K. A. Karimov, Senior Researcher, Candidate of Technical Sciences
D. A. Rogozhnikov, Head of the Laboratory, Doctor of Technical Sciences


Current concentration plants are dealing with great amounts of low-grade sulphide ores containing gold and other noble metals. Because noble metals are often found encapsulated in the main sulphide minerals (such as pyrite and arsenopyrite), such ores cannot be processed using conventional processes (e.g. cyaniding). Nitric acid leaching offers one of the innovative techniques for loosening sulphide minerals. That’s why one believes it to be of relevance to look at the dissolution kinetics of sulphide minerals in nitric acid solutions. The authors consider using the full factorial design model to study the leaching kinetics of iron being a part of arsenopyrite. The process involves the use of a rotating disk in HNO3 solutions with the concentrations of 3 and 5 mol/dm3 at the temperatures of 303 and 333 K and the rotary speeds of 3.3 and 10 RPS. The kinetic equations obtained describe the dissolution process with a high degree of accuracy. Temperature and HNO3 concentration were found to produce the most positive effect on the iron dissolution rate when iron comes as part of arsenopyrite. Agitation does not appear to produce any noticeable effect. This is confirmed by low orders of reaction with respect to the disk rotation frequency, which vary in the range of –0.13 to 0.20. The high apparent activation energy (60.8–69.6 kJ/mol) calculated can be attributed to a significant influence of the temperature on the iron dissolution rate when iron comes as part of arsenopyrite. High reaction orders with respect to the concentration of nitric acid for iron (3.9–4.7) were observed when a sample arsenopyrite disk was dissolved. It may be attributed to a passivating film that formed on the disk surface, the presence of which is indicative of a possible transition into a state in which internal diffusion serves as a limiting stage.
Support for this research was provided by the Ministry of Science and Higher Education of the Russian Federation under the Development Programme of the Ural Federal University named after the First President of Russia B. N. Yeltsin and in line with the Strategic Academic Leadership Programme Prioritet-2030.

keywords Arsenopyrite, iron, nitric acid, kinetics, leaching, rotating disk technique, full factorial design model

1. Marsden J. O., House C. I. The chemistry of gold extraction, 2nd ed. Society for Mining, Metallurgy, and Exploration. Littleton. Colorado. USA. 2006.
2. Majzlan J., Chovan M., Andráš P., Newville M., Wiedenbeck M. The nanoparticulate nature of invisible gold in arsenopyrite from Pezinok (Slovakia). Neues Jahrbuch für Mineralogie. 2010. Vol. 187. pp. 1–9. DOI: 10.1127/0077-7757/2010/0156.
3. Sobolev A. E., Lutsik V. I., Potashnikov Y. M. The kinetics of hydrochemical oxidation of iron(II) persulfide (pyrite) by nitric acid. Russian Journal of Physical Chemistry A. 2001. Vol. 75. pp. 757–759.
4. Corkhill C. L., Vaughan D. J. Arsenopyrite oxidation – A review. Applied Geochemistry. 2009. Vol. 24. pp. 2342–2361.
5. Fernandez P. G., Linge H. G., Wadsley M. W. Oxidation of arsenopyrite (FeAsS) in acid Part I: Reactivity of arsenopyrite. Journal of Applied Electrochemistry. 1996. Vol. 26. pp. 575–583. DOI: 10.1007/BF00253455.
6. Cruz R., Lazaro I., Rodriguez J. M., Monroy M., Gonzalez I. Surface characterization of arsenopyrite in acidic medium by triangular scan voltam metry on carbon paste electrodes. Hydrometallurgy. 1997. Vol. 46. pp. 303–319. DOI: 10.1016/S0304-386X(97)00027-3.
7. McGuire M. M., Edwards K. J., Banfield J. F., Hamers R. J. Kinetics, surface chemistry, and structural evolution of microbially mediated sulfide mineral dissolution. Geochimica et Cosmochimica Acta. 2001. Vol. 65. pp. 1243–1258. DOI: 10.1016/S0016-7037(00)00601-3.
8. Mikhlin Y. L., Romanchenko A. S., Asanov I. P. Oxidation of arsenopyrite and deposition of gold on the oxidized surfaces: A scanning probe microscopy, tunneling spectroscopy and XPS study. Geochimica et Cosmochimica Acta. 2006. Vol. 70, Iss. 1. pp. 4874–4888. DOI: 10.1016/j.gca.2006.07.021.

9. Fernandez P. G., Linge H. G., Willing M. J. Oxidation of arsenopyrite (FeAsS) in acid. Part II: Stoichiometry and reaction scheme. Journal of Applied Electrochemistry. 1996. Vol. 26. pp. 585–591. DOI: 10.1007/BF00253456.
10. Costa M. C., Botelho do Rogo A. M., Abrantes L. M. Characterization of a natural and an electro-oxidized arsenopyrite: a study on electrochemical and X-ray photoelectron spectroscopy. International Journal of Mineral Processing. 2002. Vol. 65. pp. 83–108. DOI: 10.1016/S0301-7516(01)00059-X.
11. McKibben M. A., Tallant B. A., del Angel J. K. Kinetics of inorganic arsenopyrite oxidation in acidic aqueous solutions. Applied Geochemistry. 2008. Vol. 23. pp. 121–135. DOI: 10.1016/j.apgeochem.2007.10.009.
12. Corkhill C. L., Wincott P. L., Lloyd J. R., Vaughan D. J. The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu3AsS4) by Leptospirillum ferrooxidans. Geochimica et Cosmochimica Acta. 2008. Vol. 72. pp. 5616–5633. DOI: 10.1016/j.gca.2008.09.008.
13. Asta M. P., Cama J., Ayora C., Acero P., De Giudici G. Arsenopyrite dissolution rates in O2-bearing solutions. Chemical Geology. 2010. Vol. 273, Iss. 3-4. pp. 272–285. DOI: 10.1016/j.chemgeo.2010.03.002.
14. Flatt J. R. The kinetics of pyrite and elemental sulfur reactions during nitric acid pre-oxidation of refractory gold ores. Candidate of Technical Science Thesis. The University of Adelaide, South Australia, Australia. 1996.
15. Gao G., Li D., Zhou Y., Sun X., Sun W. Kinetics of high-sulphur and high-arsenic refractory gold concentrate oxidation by dilute nitric acid under mild conditions. Minerals Engineering. 2009. Vol. 22. pp. 111–115. DOI: 10.1016/j.mineng.2008.05.001.
16. Rogozhnikov D. A., Rusalev R. E., Dizer О. А., Naboychenko S. S. Nitric acid loosening of rebellious sulphide concentrates containing precious metals. Tsvetnye Metally. 2018. No. 12. pp. 38–44. DOI: 10.17580/tsm.2018.12.05.
17. Rogozhnikov D. A., Shoppert A. A., Dizer O. A., Karimov K. A., Rusalev R. E. Leaching kinetics of sulfides from refractory gold concentrates by nitric acid. Metals. 2019. Vol. 9, 465. DOI: 10.3390/met9040465.
18. Karimov K. A., Rogozhnikov D. A., Kuzas E. A., Shoppert A. A. Leaching kinetics of arsenic sulfide-containing materials by copper sulfate solution. Metals. 2020. Vol. 10. 7. DOI: 10.3390/met10010007.
19. Montgomery D. C. Design and analysis of experiments. 8th edition. Wiley. USA. 2012. 743 p.
20. Bandara A. M. T. S., Senanayake G. Dissolution of calcium, phosphate, fluoride and rare earth elements (REEs) from a disc of natural fluorapatite mineral (FAP) in perchloric, hydrochloric, nitric, sulphuric and phosphoric acid solutions: A kinetic model and comparative batch leaching of major and minor elements from FAP and REFAP concentrate. Hydrometallurgy. 2019. Vol. 184. pp. 218–236. DOI: 10.1016/j.hydromet.2018.09.002.
21. Alzate A., López M. E., Serna C., Gonzalez O. Gold recovery from electronic waste by pressure Oxidation. Proceedings of the 2nd World Congress on Mechanical, Chemical, and Material Engineering (MCM’16). 2016. pp. 109-1–109-7. DOI: 10.11159/mmme16.109.
22. Hidalgo T., Kuhar L., Beinlich A., Putnis A. Kinetics and mineralogical analysis of copper dissolution from a bornite/chalcopyrite composite sample in ferric-chloride and methanesulfonic-acid solutions. Hydrometallurgy. 2019. Vol. 188. pp. 140–156. DOI: 10.1016/j.hydromet.2019.06.009.
23. Karimov K., Shoppert A., Rogozhnikov D., Kuzas E., Zakharyan S., Naboichenko S. Effect of preliminary alkali desilication on ammonia pressure leaching of low-grade copper – silver сoncentrate. Metals. 2020. Vol. 10. 812. DOI: 10.3390/met10060812.

Language of full-text russian
Full content Buy