Название |
Electroplastic rolling of refractory metal strips: mathematical modelling of the process |
Информация об авторе |
National University of Science and Technology MISiS, Moscow, Russia
O. N. Chicheneva, Associate Professor, Candidate of Technical Sciences, e-mail: ch-grafika@mail.ru M. V. Vasiliev, Senior Lecturer, e-mail: mv@karfidovlab.com N. A. Chichenev, Professor, Doctor of Technical Sciences, e-mail: chich38@mail.ru
Vyksa Branch of the National University of Science and Technology MISiS, Vyksa, Russia:
T. Yu. Gorovaya, Deputy Director for Academic Affairs, e-mail: gorovaia.ti@vfmisis.ru |
Реферат |
In order to analyze the electroplastic deformation process, the authors developed a mathematical model that simulates strip rolling with high-density electric current going through the deformation zone. The model consists of two main parts: a model for determining the strip temperature beyond the deformation zone; and a model of the deformation zone. The paper describes temperature fields calculated for a tungsten strip rolled out of a 200 μm thick and 200 μm wide workpiece at the electric current power W equal to 0.2 and 0.4 kW and rolling speeds V equal to 8.5, 28 and 50 mm/s. It was established that the maximum temperature of the strip Tmax is reached inside the deformation zone, the length of which is taken equal to the length of the contact arc ld. In the section located at a distance of more than 3·l d before the rolling stand, the temperature of the strip is equal to 25 оC, which corresponds to the ambient temperature. After the rolling stand, the strip cools down due to heat dissipation. How quickly the strip will cool down is dictated by the cooling conditions, rolling speed and strip size. Obviously, a thinner strip transfers heat more intensely. A drastic temperature increase was observed in the deformation zone of the rolling stand. After exiting from the deformation zone, the strip, heated to the deformation temperature, gradually cools down as a result of heat dissipation. The intensity of the lengthwise temperature decrease rises as the rolling speed and the heat transfer coefficient go down. The results obtained with the help of the mathematical model were used to revise the technical data of the electroplastic rolling mill (the spacing between its key components, roll design, rolling speed, electric current density, etc.) and to elaborate recommended thermomechanical rolling regimes for micron thin molybdenum and tungsten strips. |
Библиографический список |
1. Karpachev D. G., Doronkin E. D., Tsukerman S. A., Taubkin M. B., Knyazeva A. I. Refractory and rare metals and alloys: Reference book. Moscow : Metallurgiya, 1977. 238 p. 2. Savitskiy E. M., Burkhanov G. S., Povarova K. B., Jenn G. et al. Refractory metals and alloys. Moscow : Metallurgiya, 1986. 352 p. 3. Chelnokov V. S., Blinkov I. V., Anikin V. N., Volkhonskiy A. O. Application and properties of refractory metals. Moscow : Izdatelskiy DomMISiS, 2011. 115 p. 4. Osintsev O. E. Metallurgy of refractory metals and their alloys: Textbook. Moscow : Mashinostroenie, 2013. 156 p. 5. Ospennikova O. G., Podiachev V. N., Stolyankov Yu. V. Refractory alloys for new machinery. Trudy VIAM. 2016. No. 10. pp. 55–64. URL: http://viam-works.ru/plugins/content/journal/uploads/ar-ticles/pdf/1018.pdf. 6. Pavlov I. M., Gurevich Ya. B., Shelest A. E. et al. Examining certain conditions for the hot rolling of molybdenum in vacuum, argon atmosphere and air. Tsvetnye Metally. 1964. No. 12. pp. 236–265. 7. Krupin A. V., Soloviev V. Ya. Plastic deformation of refractory metals. Moscow : Metallurgiya, 1971. 281 p. 8. Kolikov A. P., Polukhin P. I., Krupin A. V., Potapov I. N. et al. Technology and equipment for handling refractory metals. Moscow : Metallurgiya, 1982. 328 p. 9. Gorbatyuk S. M., Gerasimova A. A., Belkina N. N. Applying thermal coatings to narrow walls of the continuous-casting molds. Materials Science Forum. 2016. Vol. 870. pp. 564–567. DOI: 10.4028/www.scientific.net/MSF.870.564. 10. Gorbatyuk S., Pashkov A., Chichenev N. Improved copper-molybdenum composite material production technology. Materials Today: Proceedings. 2019. Vol. 11. pp. 31–35. 11. Gromov V. E., Zuev L. B., Kozlov E. V., Tsellermaer V. Ya. Electrically stimulated plasticity of metals and alloys. Moscow : Nauka, 1996. 293 p. 12. Troitskiy O. A. Electroplastic effect in metals. Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2018. No. 9. pp. 65–76. DOI: 10.32339/0135-5910-2018-9-65-76. 13. Melnikova N. V., Khon Yu. A. On the theory of electroplastic deformation of metals. Fizicheskaya mezomekhanika. 2000. No. 3. pp. 59–64. 14. Minko D. V. Analyzing prospective applications of electroplastic effect in metal forming. Lite i Metallurgiya. 2020. No. 4. pp. 125–130. DOI: 10.21122/1683-6065-2020-4-125-130. 15. Albagachiev A. Yu., Keropyan A. M., Gerasimova A. A., Pashkov A. N. Mathematical models of temperature in electric discharge rolling of metals. CIS Iron and Steel Review. 2021. Vol. 21. pp. 43–46. DOI: 10.17580/cisisr.2021.01.07. 16. Ruszkiewicz B. J., Grimm T., Ragai I., Mears L., Roth J. T. A Review of electrically-assisted manufacturing with emphasis on modeling and understanding of the electroplastic effect. Journal of Manufacturing Science and Engineering. 2017. Vol. 139, No. 11. p. 110801. 17. Nguyen-Tran H., Oh H., Hong S., Han H. N. et al. A review of electricallyassisted manufacturing. International Journal of Precision Engineering and Manufacturing – Green Technology. 2015. Vol. 2, No. 4. pp. 365–376. 18. Guan L., Tang G., Chu P. K. Recent advances and challenges in electroplastic manufacturing processing of metals. Journal of Materials Research. 2010. Vol. 25, No.7. pp. 1215–1224. 19. Jones J. J., Mears L. Constant current density compression behavior of 304 stainless steel and Ti – 6Al – 4V during electrically-assisted forming. ASME Journal of Manufacturing Science and Engineering. 2011. Paper No. MSEC2011-50287. pp. 629–637. 20. Hong S., Jeong Y., Chowdhury M. N., Chun D. et al. Feasibility of electrically assisted progressive forging of aluminum 6061-T6 alloy. CIRP Annals – Manufacturing Technology. 2015. Vol. 64, No. 1. pp. 277–280. 21. Lykov A. V. Theory of heat conductivity. Moscow : Vysshaya shkola, 1967. 599 p. 22. Kutateladze S. S. Heat transfer and hydrodynamic resistance: Handbook. Moscow : Energoatomizdat, 1990. 367 p. 23. Telegin A. S., Shvydkiy V. S., Yaroshenko Yu. G. Heat and mass transfer: Textbook for university students. Ed. by Yu. G. Yaroshenko. Moscow : IKTs “Akademkniga”, 2002. 454 p. 24. Khrustalev B. M. et al. Heat and mass exchange: Learner’s guide. In 2 parts. Ed. by A. P. Neseichuk. Minsk : BNTU, P. 1. 2007. 606 p. ; P. 2. 2009. 274 p. 25. Zaykov M. A., Polukhin V. P., Zaykov A. M., Smirnov L. N. Rolling processes. Moscow : MISiS, 2004. 640 p. 26. Nikitin G. S. Theory of continuous lengthwise rolling: Learner’s guide. Moscow : Izdatelstvo MGTU im. N. E. Baumana, 2009. 399 p. 27. Kokhan L. S., Korostelev A. B., Morozov Yu. A., Aldunin A. V. Forces and kinematic parameters of lengthwise sheet rolling: Monograph. Moscow : MGVMI, 2012. 432 p. |