Журналы →  Gornyi Zhurnal →  2022 →  №12 →  Назад

GEOLOGY, SEARCH AND EXPLORATION OF MINERALS
Название Variation in reservoir properties of productive strata in offshore fields of Azerbaijan
DOI 10.17580/gzh.2022.12.02
Автор Gasanov A. B., Gurbanov V. Sh., Abbasova G. G.
Информация об авторе

Institute of Oil and Gas, Azerbaijan National Academy of Sciences, Baku, Azerbaijan:

A. B. Gasanov, Professor, Doctor of Physical and Mathematical Sciences, adalathasanov@yahoo.com
V. Sh. Gurbanov, Professor, Doctor of Geological and Mineralogical Sciences

 

Azerbaijan State Oil and Industry University, Baku, Azerbaijan:
G. G. Abbasova, Researcher

Реферат

The authors attempt to correlate reservoir properties and occurrence depth of the Mesozoic–Cenozoic oil-and-gas-bearing deposits within the limits of the Absheron uplift. The scope of data generalization embraced the offshore fields Banka Absheron, Western Absheron and Darwin Banka which are the long-term mining projects. The terrigene sediments in the section of the listed deposits include four groups of rocks: clayey siltstone, clayey sandy siltstone, sandy clayey siltstone and shaly sand. The first group (clayey siltstone) is dominated by a pellite fraction of grains 0.175 mm in size. The other two fractions, namely, siltstone composed of grains 0.055 mm in size and fine-grained sand with 0.01 mm size particles, are approximately the same in terms of volume. The latter fraction, which is mediumgrain sand with particles 0.25 mm in size, is small in volume and can be neglected. In the rest three groups, the main fraction is grains 0.055 mm in size, and the fractions with particles having sizes of 0.175 mm and 0.01 mm differ in volumes. The analysis of variation in the grain size ratio in depth shows that the porosity tends to decrease depthwise and is described by the function Y = –0.16X + 12.59 at an average gradient of 0.6% per each 100 m depthward. In the west of the Absheron uplift, the porosity jumps (around 14.2%) with a weaker trend of decrease in depth of the section, or 0.25% per 100 m. The inverse relationship between porosity and carbonate–clayey component in the section is proved in terms of the oilfields Banka Absheron and Western Absheron.

Ключевые слова Oil-and-gas-bearing deposits, reservoir properties, grain size, grain size analysis, porosity
Библиографический список

1. Aliev A. K., Yusifov Kh. M., Rzaev A. A. Search for new oilfields in the area of the Siyazan monocline. Azerbaydzhanskoe neftyanoe khozyaystvo. 1990. No. 6. pp. 15–19.
2. Ali-zade A. A., Akhmedov G. A., Akhmedov A. M., Aliev A. K., Zeynalov M. M. Geology of oil and gas fields in Azerbaijan. Moscow : Nedra, 1966. 392 p.
3. Kerimov V. Yu., Gasanov A. B., Gurbanov V. Sh., Abbasova G. G. Petrophysical characteristic of deep oil and gas reservoirs in inland and offshore fields in Azerbaijan. Eurasian Mining. 2020. No. 1. pp. 3–8. DOI: 10.17580/em.2020.01.01
4. Mousavi M. S. Spatial variation in the frequency-magnitude distribution of earthquakes under the tectonic framework in the Middle East. Journal of Asian Earth Sciences. 2017. Vol. 147. pp. 193–209.
5. Bzhitskikh T. G., Sandu S. F., Pulkina N. E. Determination of physical and poroperm properties of rocks. Tomsk : Izdatelstvo Tomskogo politekhnicheskogo universiteta, 2008. 90 p.
6. Kerimov K. M. (Ed.). Geophysical research in Azerbaijan : Current situation, results, prospects. Baku, 1996. 394 p.
7. Gasanov A. B., Ganbarova Sh. A. Analysis of petrophysical specifics of the tectonic zone Khamamdag-Deniz–Nakhchivan. Izvestiya vysshikh tekhnicheskikh uchebnykh zavedeniy Azerbaydzhana. 2019. No. 4. pp. 25–32.
8. Guliev I. S., Shikhaliev O. A., Feyzullaev A. A., Kocharli Sh. S. Concept of geologic exploration of hydrocarbons in Azerbaijan. Azerbaydzhanskoe neftyanoe khozyaystvo. 2014. No. 9. pp. 8–15.
9. Salmanov A. M., Suleymanov A. M., Magerramov V. I. Paleogeology of oil and gas provinces in Azerbaijan. Baku : Mars Print, 2015. 472 p.
10. Kerimov K. M., Rakhmanov R. R., Kheirov M. B. Oil and gas content of the South Caspian megadepression. Baku, 2001. 317 p.
11. Kocharli Sh. S. Problems of oil and gas geology of Azerbaijan. Baku, 2015. 278 p.
12. Yusifov Kh. M., Aslanov B. S. Petroleum basins in Azerbaijan. Baku : Mars-Print, 2018. 324 p.
13. Levchuk M. A., Bukreeva G. F. Assorted terrigene sedimentation and averaging values for grain size composition. Russian Geology and Geophysics. 1984. Vol. 25, No. 9. pp. 34–41.
14. Lobusev A. V. Field geology framework for modeling oil and gas reservoirs : Tutorial. 2nd revised edition. Moscow : RGU nefti i gaza (NIU) im. I. M. Gubkina, 2017. 334 p.
15. Romanovskiy S. I. Application of information theory to solving some problems of lithology. Mathematical models in geology : Collected works. Leningrad : VSEGEI, 1968. pp. 75–92.
16. Sokolov S. Yu., Turko N. N. Methods for Medium-Scale Tectonic Mapping of Deep Ocean Areas. Geotectonics. 2021. Vol. 55, No. 2. pp. 161–178.
17. Trifonov V. G., Sokolov S. Yu., Bachmanov D. M., Sokolov S. A., Trikhunkov Ya. I. Neotectonics and the Upper Mantle Structure of Central Asia. Geotectonics. 2021. Vol. 55, No. 3. pp. 334–360.
18. Chamov N. P. Formation and Development Forecast of the Western Arctic as a Segment of the Atlantic–Arctic Rift System. Geotectonics. 2021. Vol. 55, No. 5. pp. 755–777.
19. Bochkarev A. O. Application of boundary element method to geometrically nonlinear problems of elasticity. Vestnik St. Petersburg University, Mathematics. 1996. No. 3. pp. 62–64.
20. Anderson E. M. The dynamics of faulting. Transactions of the Edinburgh Geological Society. 1905. Vol. 8, No. 3. pp. 387–402.
21. Skolotnev S. G., Sanfilippo A., Peyve A. A., Nestola Y., Sokolov S. Yu. et al. Seafloor Spreading and Tectonics at the Charlie Gibbs Transform System (52-53ºN, Mid Atlantic Ridge): Preliminary Results from R/V A.N. Strakhov Expedition S50. Ofioliti. 2021. Vol. 46(1). pp. 83–101.
22. Aydin A., Borja R. I., Eichhubl P. Geological and mathematical framework for failure modes in granular rock. Journal of Structural Geology. 200 6. Vol. 28, Iss. 1. pp. 83–98.
23. Chuhan F. A., Kjeldstad A., Bjørlykke K ., Høeg K. Experimental compression of loose sands: relevance to porosity reduction during burial in sedimentary basins. Canadian Geotechnical Journal. 2003. Vol. 40, No. 5. pp. 995–1011.
24. Chuhan F. A., Kjeldstad A., Bjørlykke K., Høeg K. Porosity loss in sand by grain crushing – experimental evidence and relevance to reservoir quality. Marine and Petroleum Geology. 2002. Vol. 19, Iss. 1. pp. 39–53.
25. Croize D., Bjorlykke K., Dysthe D.K., Renard F., Jahren J. Deformation of carbonates, experimental mechanical and chemical compaction. Geophysical Research Abstracts. Vienna, 2008. Vol. 10.
26. Cuss R. J., Rutter E. H., Holloway R. F. The application of critical state soil mechanics to the mechanical behaviour of porous sandstones. International Journal of Rock Mechanics and Mining Sciences. 2003. Vol. 40, Iss. 6. pp. 847–862.
27. Sanfilippo A., S alters V. J. M., Sokolov S. Y., Peyve A. A., Stracke A. et all. Ancient refractory asthenosphere revealed by mantle re-melting at the Arctic Mid Atlantic Ridge. Earth and Planetary Science Letters. 2021. Vol. 566. 116981. DOI: 10.1016/j.epsl.2021.116981
28. Denisova A. P., Moroz E. A., Sukhikh E. A., Zarayskaya Yu. A. Relief of degassing areas in the eastern part of the Pechora Sea. Proceedings of the 26th International Conference on Port and Ocean Engineering under Arctic Conditions. Moscow, 2021.
29. Haimson B., Lee H. Borehole breakouts and compaction bands in two high porosity sandstones. International Journal of Rock Mechanics and Mining Sciences. 2004. Vol. 41, Iss. 2. pp. 287–301.
30. Holcomb D., Rudnicki J. W., Issen K. A., Sternlof K. Compaction localization in the Earth and the laboratory: state of the research and research directions. Acta Geotechnica. 2007. Vol. 2. pp. 1–15.
31. Issen K. A., Challa V. Influence of the intermediate principal stress on the strain localization mode in porous sandstone. Journal of Geophysical Research. 2008. Vol. 113, Iss. B2. B02103. DOI: 10.1029/2005JB004008
32. Issen K. A., Rudnicki J. W. Conditions for compaction bands in porous rock. Journal of Geophysical Research: Solid Earth. 2000. Vol. 105, Iss. B9. pp. 21529–21536.
33. Jaeger J. C., Cook N. G. W., Zimmermann R. W. Fundamentals of Rock Mechanics. 4th ed. Oxford : Blackwell Publishing, 2007. 488 p.
34. Knut Bjørlykke. Petroleum Geoscience: From Sedimentary Environments to Rock Physics. 2nd ed. Berlin : Springer, 2010. 508 p.
35. Knut Bjorlykke, Jens Jahren, Nazmul Haqui Mondol, Oyvind Marcussen, Delphine Croize et al. Sediment Compaction and Rock Properties. AAPG International Conference and Exhibition. Cape Town, 2008.
36. Bésuelle P., Rudnicki J. W. Localization: Shear Bands and Compaction Bands. Mechanics of Fluid-Saturated Rocks. Series: International Geophysics. Amsterdam : Elsevier, 2004. Vol. 89. pp. 219–321.
37. Bjørlykke K. Effects of compaction processes on stresses, faults, and fluid flow in sedimentary basins: examples from the Norwegian Margin : Special Publications. London : Geological Society, 2006. Vol. 253. pp. 359–379.

Language of full-text русский
Полный текст статьи Получить
Назад