Журналы →  Tsvetnye Metally →  2022 →  №11 →  Назад

RARE METALS, SEMICONDUCTORS
Название Effect of Titanium tetrachloride on the rate of chlorination of Yarega quartz-leucoxene concentrate
DOI 10.17580/tsm.2022.11.04
Автор Zanaveskin K. L.
Информация об авторе

A.V. Topchiev Institute of Petrochemical Synthesis at the Russian Academy of Sciences, Moscow, Russia:

K. L. Zanaveskin, Senior Researcher, Candidate of Chemical Sciences, email: zakon82@mail.ru

Реферат

This paper considers the results of a study that looked at chlorination of the Yarega quartz-leucoxene concentrate in an ebullated bed reactor (EBR) that feeds titanium tetrachloride vapours and their mixture with chlorine to the reaction mass. The experiments were conducted at a temperature of 850 oC and an incoming gas flow rate of 1,600 ml/min. 250–315 μm concentrate grains mixed with 160–250 μm calcined petroleum coke (the carbon to titanium dioxide molecular ratio was 5) were subjected to chlorination. The reaction products were analyzed with the help of inductively coupled plasma optical emission spectroscopy. It was found that, in the absence of chlorine, titanium tetrachloride only interacts with iron oxides. Feeding a mixture of titanium tetrachloride vapours and chlorine into the reactor leads to an intensified chlorination of the main concentrate components, including TiO2, SiO2, Al2O3 and Fe2O3. The TiO2 chlorination rate rises proportionally to the square root of the partial pressure of titanium tetrachloride in the gas-vapour mixture. The risen rate can be attributed to a higher concentration of active chlorine atoms, which in this case occur on carbon surface not only due to dissociation of molecular chlorine but also as a result of decomposition of titanium tetrachloride. A higher partial pressure of chlorine atoms leads to higher rates of reaction between the chlorine atoms and the concentrate components. According to the proposed reaction mechanism, the TiO2 chlorination rate is proportional to the square root of the product of the partial pressure of TiCl4 and the carbon grains surface area. The excessive chlorine does not impact the chlorination rate. It would be advisable to take into account the discovered ability of TiCl4 to intensify the titanium dioxide chlorination process when designing a chlorine feeding unit in the ebullated bed reactor. Feeding chlorine mixed with titanium tetrachloride vapours into the lower section of the reactor can help enhance the process performance while avoiding using too much chlorine.
The work weas carried out under financial support of the Russian Foundation for Basic Research grant, the project No. 18-29-24187mk.

Ключевые слова Yarega field, chlorination, titanium tetrachloride, ebullated bed, leucoxene, quartz-leucoxene concentrate, rutile, quartz, reaction mechanism, kinetics
Библиографический список

1. On the status and use of mineral resources of the Russian Federation in 2019: State report. Ed. by E. A. Kiselev. Moscow : VIMS, 2020. 492 p.
2. Leontiev L. I., Vlasenko V. I. Prospective exploitation of the Yarega titanium reserves. Razvedka i okhrana nedr. 2021. No. 8. pp. 56–60.
3. Zanaveskin K. L., Maslennikov A. N., Zanaveskina S. M., Dmitriev G. S., Zanaveskin L. N. et al. Leaching SiO2 and Al2O3 impurities from leucoxene from Yaregskoe deposit by sodium hydroxide solution. Theoretical Foundations of Chemical Engineering. 2019. No. 53. pp. 669–679.
4. Zanaveskin K. L., Maslennikov A. N., Makhin M. N., Zanaveskin L. N. Influence of granulometric composition on leucoxene concentrate processing with titanium tetrachloride obtaining (Yaregskoe deposit). Tsvetnye Metally. 2016. No. 10. pp. 79–85. DOI: 10.17580/tsm.2016.10.11.
5. Perovskiy I. A., Burtsev I. N., Ponoryadov A. V., Somorokov A. A. Ammonium fluoride roasting and water leaching of leucoxene concentrate to produce a high grade titanium dioxide resource (of the Yaregskoye deposit, Timan, Russia). Hydrometallurgy. 2022. Vol. 210. 105858.
6. Zanaveskin K. L., Maslennikov A. N., Zanaveskina S. M., Dmitriev G. S. The Yaregskoye deposit leucoxene processing by means of autoclave leaching. Obogashchenie Rud. 2016. No. 6. pp. 14–20. DOI: 10.17580/or.2016.06.03.
7. Zanaveskin K. L., Maslennikov A. N., Dmitriev G. S., Zanaveskin L. N. Autoclave processing of quartz-leucoxene concentrate (Yaregskoe deposit). Tsvetnye Metally. 2016. No. 3. pp. 49–56. DOI: 10.17580/tsm.2016.03.08.
8. Nikolaev A. A., Nikolaev A. V., Kirpichev D. E. Looking at the separation of titanium and silicon oxides during plasma arc smelting of quartz-leucoxene concentrate. Fizika i khimiya obrabotki materialov. 2021. No. 5. pp. 30–36.
9. Nikolaev A. A., Kirpichyov D. E. Nikolaev A. V. The energetic structure of plasma arc anode under reduction melting of quartz-leucoxene concentrate. Inorganic Materials: Applied Research. 2019. Vol. 10. pp. 560–565.
10. Kuzin E. N., Nosova T. I., Lyubushkina T. G. Comprehensive pyro- and hydrometallurgical processing of quartz-leucoxene concentrate. Uspekhi v khimii i khimicheskoy tekhnologii. 2021. Vol. XXXV. pp. 50–52.
11. Perovskiy I. A. Synthesis of titanosilicates from leucoxene concentrate. ISES-2020: Proceedings of the 12th Perchuk International School on Earth Sciences. 2020. p. 41.
12. Zanaveskin K. L., Terekhov A. V., Zanaveskin L. N., Lukashev R. V., Maslennikov A. N. et al. Preparation of porous materials from a leucoxene concentrate. Inorganic Materials. 2016. Vol. 52, Iss. 8. pp. 796–801.
13. Zanaveskin K. L., Lukashev R. V., Makhin M. N., Zanaveskin L. N. Hydrothermal preparation of porous materials from a rutile-quartz concentrate. Ceramics International. 2014. Vol. 40, Iss. 10. pp. 16577–16580.
14. GOST 6718–93. Liquid chlorine. Specifications. Introduced: 01.01.1995.
15. Zanaveskin K. L., Meshalkin V. P. Chlorination of quartz-leucoxene concentrate of Yarega Field. Metallurgical and Materials Transactions B. 2020. Vol. 51. pp. 906–915.
16. Zanaveskin K. L., Maslennikov A. N., Makhin M. N., Zanaveskin L. N. Special features of the Yaregskoye deposit quartz-leucoxene rougher concentrate chemical and mineral composition. Obogashchenie Rud. 2015. No. 5. pp. 20–27. DOI: 10.17580/or.2015.05.05.
17. Sohn H. Y., Zhou L., Cho K. Intrinsic kinetics and mechanism of rutile chlorination by CO + Cl2 mixtures. Industrial & Engineering Chemistry Research. 1998. Vol. 37. pp. 3800–3805.
18. Zelikman A. N. Metallurgy of refractory metals. Moscow : Metallurgiya, 1986. 440 p.
19. Levenspiel O. Chemical Reaction Engineering. 3rd ed. New York : Wiley, 1999.
20. Morris A. J., Jensen R. F. Fluidized-bed chlorination rates of australian rutile. Metallurgical and Materials Transactions B. 1976. Vol. 7. pp. 89–93.
21. Yang F., Hlavácek V. Carbochlorination kinetics of titanium dioxide with carbon and carbon monoxide as reductant. Metallurgical and Materials Transactions B. 1998. Vol. 29. pp. 1297–1307.
22. Sohn H. Y., Zhou L. The kinetics of carbochlorination of titania slag. Canadian Journal of Chemical Engineering. 1998. Vol. 76. pp. 1078–1082.
23. Niu L., Ni P., Zhang T., Lv G., Zhou A. et al. Mechanism of fluidized chlorination reaction of Kenya natural rutile ore. Rare Metals. 2014. Vol. 33. pp. 485–492.
24. El-Sadek M. H., Fouad O. F., Morsi M. B., El-Barawy K. A. Controlling conditions of fluidized bed chlorination of upgraded titania slag. Transactions of the Indian Institute of Metals. 2018. Vol. 72. pp. 423–427.
25. Dunn W. E. High temperature chlorination of titanium bearing minerals: Part III. Metallurgical Transactions B. 1979. Vol. 10. pp. 293–294.
26. Dunn W. E. High temperature chlorination of titanium bearing minerals: Part IV. Metallurgical Transactions B. 1979. Vol. 10. pp. 271–277.
27. Barin I., Schuler W. On the kinetics of the chlorination of titanium dioxide in the presence of solid carbon. Metallurgical and Materials Transactions B. 1980. Vol. 11, Iss. 2. pp. 199–207.
28. Amorebieta V. T., Colussi A. J. Direct study of the catalytic decomposition of chlorine and chloromethanes over carbon films. International Journal of Chemical Kinetics. 1985. Vol. 17, Iss. 8. pp. 849–858.
29. Karapetiants M. Kh., Karapetiants M. L. Basic thermodynamic constants of inorganic and organic compounds. Moscow : Khimiya, 1968. 472 p.
30. Andrade-Gamboa J., Pasquevich D. M. A model for the role of carbon on carbochlorination of TiO2. Metallurgical and Materials Transactions B. 2000. Vol. 31. pp. 1439–1446.
31. Pasquevich D. M., Amorebieta V. T. Mass spectrometric study of volatile products during the carbochlorination of zirconia. Berichte der Bunsengesellschaft fuer Physikalische Chemie. 1992. Vol. 96, Iss. 4. pp. 530–533.
32. Jena P. K., Brocchi E. D., Reis M. L. Kinetics of chlorination of zirconia in mixture with petroleum coke by chlorine gas. Metallurgical and Materials Transactions B. 1999. Vol. 30. pp. 375–381.
33. Ojeda M. W., Rivarola J. B., Quiroga O. Study on chlorination of molybdenum trioxide mixed with carbon black. Minerals Engineering. 2002. Vol. 15, Iss. 8. pp. 585–591.
34. Pomiro F. J., Fouga G. G., Gaviría J. P., Bohé A. E. Study of the Reaction Stages and Kinetics of the Europium Oxide Carbochlorination. Metallurgical and Materials Transactions B. 2014. Vol. 46. pp. 304–315.
35. González J. A., Del M. C., Ruiz C., Rivarola J. B., Pasquevich D. M. Effects of heating in air and chlorine atmosphere on the crystalline structure of pure Ta2O5 or mixed with carbon. Journal of Materials Science. 1998. Vol. 33. pp. 4173–4180.
36. Esquivel M. R., Bohé A. E., Pasquevich D. M. Carbochlorination of cerium dioxide. Mineral Processing and Extractive Metallurgy. 2002. Vol. 111, Iss. 3. pp. 149–155.
37. Browne R. J., Ogryzlo E. A. Halogen Atom Reactions. IV. Recombination into electronically excited states. Journal of Chemical Physics. 1970. Vol. 52. pp. 5774–5780.
38. Ogryzlo E. A. Halogen atom reactions: I. The electrical discharge as a source of halogen atoms. Canadian Journal of Chemistry. 1961. Vol. 39. pp. 2556–2562.
39. Kota G. P., Coburn J. W., Graves D. B. The recombination of chlorine atoms at surfaces. Journal of Vacuum Science and Technology. 1998. Vol. 16. pp. 270–277.
40. Davis D. B., Tarsey A. R. Purification of crude titanium tetrachloride. Patent US 2890100. Publication: 17.06.1959.
41. Galitskiy N. V., Lebedev G. N., Dmitriev Yu. M. Conduct pilot tests for the process and equipment for making titanium dioxide pigment. Report prepared by Titanium Institute on Subject No. 17. Zaporizhzhia, 1967. 38 p.

Language of full-text русский
Полный текст статьи Получить
Назад