Название |
Crystallographic texture and structure formed in rolled sheets of zirconium alloys during annealing |
Библиографический список |
1. Douglass D. The metallurgy of zirconium. Moscow : Atomizdat, 1975. 380 p.
2. Zaymovskiy A. S., Nikulina A. V., Reshetnikov N. G. Zirconium alloys in nuclear power industry. Moscow : Energoizdat, 1981. 232 p. 3. Kocks U. F., Tome C. N., Wenk H.-R. Texture and Anisotropy. Preferred orientation in polycrystals and their effect on materials properties : Cambridge University Press, 1998. 676 p. 4. Adamson R., Garzarolli F., Patterson C. In-Reactor Creep of Zirconium Alloys. Advanced Nuclear Technology International, Sweden, 2009. 144 p. 5. Holt R. A., Christodoulou N., Causey A. R. Anisotropy of in-reactor deformation of Zr – 2.5 Nb pressure tubes. Journal of Nuclear Materials. 2003. No. 317. pp. 256–260. 6. Gerspach F., Bozzolo N., Wagner F. About texture stability during primary recrystallization of cold-rolled low alloyed zirconium. Scripta Materialia. 2009. Vol. 60, Iss. 4. pp. 203–206. 7. Dewobroto N., Bozzolo N., Barberis P., Wagner F. On the mechanisms governing the texture and microstructure evolution during static recrystallization and grain growth of low alloyed zirconium sheets (Zr7O2). International Journal of Materials Research. 2006. Vol. 97, Iss. 6. pp. 826–833. 8. Perlovich Y., Isaenkova M. et. al. Recrystallization in materials processing. InTech, Rijeka, Croatia, 2015. 220 p. 9. Tae-Sik Jung, Hun Jang, Yong-Kyoon Mok, Jong-Sung Yoo. Analysis of EBSD image quality related to microstructure evolution in zirconium — niobium cladding to quantify the degree of recrystallization. Journal of Nuclear Materials. 2018. Vol. 509. pp. 188–197. 10. Jiang Y.-l., Liu H.-Q., YI D.-Q. et al. Microstructure evolution and recrystallization behavior of cold-rolled Zr – 1 Sn – 0.3 Nb – 0.3 Fe – 0.1 Cr alloy during annealing. Transactions of Nonferrous Metals Society of China. 2018. Vol. 28. pp. 651–661. 11. Zimmermann A. J. O., Padilha A. F. Rolling and recrystallization behavior of pure Zirconium and Zircaloy-4. Revista Materia. 2019. Vol. 24, No. 03. DOI: 10.1590/S1517-707620190003.076. 12. Perlovich Y., Isaenkova M. Distribution of c- and a-dislocations in tubes of Zr alloys. Metallurgical and Materials Transactions A. 2002. Vol. 33. pp. 867–874. 13. Isaenkova M., Perlovich Yu., Fesenko V., Krymskaya O., Krapivka N. et al. Regularities of recrystallization in rolled Zr single crystals and polycrystals of zirconium and alloy Zr – 1% Nb. Physics of Metals and Metallography. 2014. Vol. 115, Iss. 8. pp. 756–764. DOI: 10.1134/S0031918X14080055. 14. Isaenkova M. G., Perlovich Yu. A., Soe San Thu, Krymskaya O. A., Fesenko V. A. Development of crystallographic texture in the time of rolling or Zr monocrystals and their recrystallization. Tsvetnye Metally. 2014. No. 12. pp. 73–78. 15. Isaenkova M. G., Perlovich Yu. A. Regularities in the evolution of crystallographic texture and substructural heterogeneity in zirconium alloys during deformation and heat treatment. Moscow : NIYaU MIFI, 2014. 528 p. 16. Rudnizki J., Zeislmair B., Prahl U., Bleck W. Prediction of abnormal grain growth during high temperature treatment. Computational Materials Science. 2010. Vol. 49, Iss. 2. pp. 209–216. 17. García-Bernal M. A., Mishra R. S., Verma R., Hernandez-Silva D. Inhibition of abnormal grain growth during hot deformation behavior of friction stir processed 5083 Al alloys. Materials Science and Engineering A. 2015. Vol. 636. pp. 326–330. 18. Chen J. W., Luan B. F., Chai L. J., Yu H. B., Liu Q. et al. Hetergeneous microstructure and texture evolution during fabrication of Zr – Sn – Nb zirconium alloy sheets. Acta Metallurgica Sinica. 2012. Vol. 48, Iss. 4. pp. 393–400. 19. Gillen C., Garner A., Plowman A., Race C. P., Lowe T. et al. Advanced 3D characterisation of iodine induced stress corrosion cracks in zirconium alloys. Materials Characterization. 2018. Vol. 141. pp. 348–361. 20. Borodkina M. M., Spektor E. N. X-ray analysis of metals and alloys. Moscow : Metallurgiya, 1981. 272 p. 21. Pawlik K. Determination of the orientation distribution function from pole figures in arbitrarily defined cells. Physica Status Solidi. 1986. Vol. 134 (b). pp. 477–483. 22. LaboTex v. 3.0 by LaboSoft (Krakow, Poland). Available at: http://www.labosoft.com.pl. 23. Kearns J. J., Woods C. R. Effect of texture, grain size, and cold work on the precipitation of oriented hydrides in zircaloy tubing and plate. Journal of Nuclear Materials. 1966. Vol. 20, Iss. 3. pp. 241–261. 24. Baranov V. G., Lunev A. V., Reutov V. F., Tenishev A. V., Isaenkova M. G. et al. An attempt to reproduce high burn-up structure by ion irradiation of SIMFUEL. Journal of Nuclear Materials. 2014. Vol. 452, Iss. 1-3. pp. 147–157. 25. Tenckhoff E. Deformation mechanisms, texture and anisotropy in Zirconium and Zircaloy. ASTM: STP 966. 1988. 80 p. 26. Thool K., Patra A., Fullwood D., Mani Krishna K. V., Srivastava D. et al. The role of crystallographic orientations on heterogeneous deformation in a zirconium alloy: A combined experimental and modeling study. International Journal of Plasticity. 2020. Vol. 133. 102785. 27. Knezevic M., Zecevic M., Beyerlein I. J., Bingert J. F., McCabe R. J. Strain rate and temperature effects on the selection of primary and secondary slip and twinning systems in HCP Zr. Acta Materialia. 2015. Vol. 88. pp. 55–73. DOI: 10.1016/j.actamat.2015.01.037. 28. Isaenkova M. G., Tenishev A. V., Krymskaya O. A., Stolbov S. D., Mikhalchik V. V. et al. Influence of the structural state and crystallographic texture of Zr – 2.5 % Nb alloy samples on the anisotropy of their thermal expansion. Nuclear Materials and Energy. 2021. Vol. 29. 101071. |