Журналы →  Tsvetnye Metally →  2022 →  №8 →  Назад

Название Influence of the chemical and granulometric composition of quartz-leucoxene concentrate on its processing into titanium tetrachloride in fluidized bed reactors
DOI 10.17580/tsm.2022.08.06
Автор Zanaveskin K. L.
Информация об авторе

A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia:

K. L. Zanaveskin, Senior Researcher, Candidate of Chemical Sciences, e-mail: zakon82@mail.ru


The results of a study of the chlorination of various fractions of the quartz-leucoxene concentrate of the Yaregskoye deposit are presented. Comprehensive complementary work has been carried out to study the changes in the chemical and mineral composition of leucoxene grains that occur during their chlorination at a temperature of 850 oC and a 5-fold molar excess of carbon. It has been established that under the conditions of the process, the quartz admixture is inert to the action of chlorine, and the chlorination of aluminosilicates does not proceed completely. Chlorination of leucoxene grains proceeds according to the model of a contracting core of a particle of a constant size. During the chlorination process, the reacting core is reduced, leaving a solid inert layer, which mainly consists of quartz. The inert layer prevents direct contact of carbon particles with the TiO2 surface located inside the grains. The TiO2 chlorination reaction proceeds through the formation of gaseous intermediates (presumably chlorine atoms) formed on the carbon surface. Gaseous reagents reach the surface of TiO2 inside the particles by means of their diffusion through the pores and channels of the inert quartz layer. Chlorine atoms enter into recombination reactions, which leads to thea decrease in their concentration when passing through the quartz layer. Having reached the surface of the reacting core inside the leucoxene grains, chlorine atoms interact with TiO2. As the thickness of the quartz layer increases, the degree of recombination of chlorine atoms increases, and the rate of the TiO2 chlorination reaction decreases. Upon reaching the critical thickness of the quartz layer, equal to 55 μm, chlorine atoms practically disappear, and the process of chlorination of TiO2 stops. For this reason, titanium dioxide in the fractions of the concentrate, the grains of which are larger than 110 microns, is not completely chlorinated. Processing of the concentrate of natural grain size makes it possible to achieve the extraction of titanium at the level of 80%. Grinding the grains of the concentrate leads to high losses of TiO2 with dusty fractions and cannot be used as a stage in the preparation of the concentrate for chlorination. To create an industrial process for the production of titanium tetrachloride in fluidized bed reactors, it is necessary to develop a method that enables to increase the extraction of TiO2 from the concentrate.
The study was carried out with the financial support of the Russian Foundation for Basic Research within the framework of the scientific project No. 18-29-24187 MK.

Ключевые слова Yaregskoye deposit, chlorination, titanium tetrachloride, fluidized bed, leucoxene, quartz-leucoxene concentrate, rutile, quartz, aluminosilicate
Библиографический список

1. Leontyev L. I. Prospects for the development of the titanium potential of the Yaregskoye deposit. Razvedka i okhrana nedr. 2021. No. 8. pp. 56–60.
2. Stanawey K. J. Overview of titanium dioxide feedstocks. Mining Engineering. 1994. Vol. 46. pp. 1367–1370.
3. Perovskiy I. A., Burtsev I. N., Ponoryadov A. V., Somorokov A. A. Ammonium fluoride roasting and water leaching of leucoxene concentrate to produce a high grade titanium dioxide resource (of the Yaregskoye deposit, Timan, Russia). Hydrometallurgy. 2022. Vol. 210. 105858.
4. Zanaveskin К. L., Maslennikov А. N., Zanaveskina S. М., Dmitriev G. S. The Yaregskoye deposit leucoxene processing by means of autoclave leaching. Obogashchenie Rud. 2016. No. 6. pp. 14–20. DOI: 10.17680/or.2016.06.03.
5. Zanaveskin К. L., Maslennikov А. N., Dmitriev G. S., Zanaveskin L. N. Autoclave processing of quartz-leucoxene concentrate (Yaregskoye deposit). Tsvetnye Metally. 2016. No. 3. pp. 49–56. DOI: 10.17580/tsm.2016.03.08.
6. Nikolaev А. А., Nikolaev А. V., Kirpichev D. Е. Studies of the separation of titanium and silicon oxides during plasma-arc melting of quartz-leucoxene concentrate. Fizika i khimiya obrabotki materialov. 2021. No. 5. pp. 30–36.
7. Nikolaev A. A., Kirpichyov D. E., Nikolaev A. V. The energetic structure of plasma arc anode under reduction melting of quartz-leucoxene concentrate. Inorganic materials: applied research. 2019. Vol. 10, No. 3. pp. 560–565.
8. Kuzin Е. N., Nosova Т. I., Lyubushkina Т. G. Integrated pyro- and hydrometallurgical technology for processing quartz-leucoxene concentrate. Uspekhi v khimicheskoy tekhnologii. 2021. Vol. 35, No. 14. pp. 50–52.
9. Perovskiy I. А. Synthesis of titanosilicates from leucoxene concentrate. Proceedings of the XII International School of Geosciences named after Professor L. L. Perchuk (ISES-2020). Materialy Shkoly. 2020. p. 41.
10. Zanaveskin K. L., Terekhov A. V., Zanaveskin L. N., Lukashev R. V., Maslennikov A. N. et al. Preparation of porous materials from a leucoxene concentrate. Inorganic Materials. 2016. Vol. 52, No. 8. pp. 796–801.
11. Zanaveskin K. L., Lukashev R. V., Makhin M. N., Zanaveskin L. N. Hydrothermal preparation of porous materials from a rutile-quartz concentrate. Ceramics International. 2014. Vol. 40, Iss. 10. pp. 16577–16580.
12. Garmata V. А., Petrunko А. N., Galitskiy N. V., Olesov Yu. G., Sandler R. А. Titanium. Moscow : Metallurgiya, 1983. 530 p.
13. Hudon G., Filippou D. Chemical processes for the production of titanium tetrachloride as precursor of titanium metal. Extractive Metallurgy of Titanium. Chapter 4. 2020. pp. 47–62.
14. Bordbar H., Yousefi A. A., Abedini H. Production of titanium tetrachloride (TiCl4) from titanium ores : A review. Polyolefins Journal. 2017. Vol. 4, No. 2. pp. 149–173.
15. On the state and use of mineral resources of the Russian Federation in 2019. Chief editor E. A. Kiselev. Moscow : VIMS, 2020. 492 p.
16. Zanaveskin K. L., Meshalkin V. P. Chlorination of Quartz-Leucoxene Concentrate of Yarega Field. Metallurgical and Materials Transactions B. 2020. Vol 51. pp. 906–915.
17. Zanaveskin К. L., Maslennikov А. N., Makhin M. N., Zanaveskin L. N. Special features of the Yaregskoye deposit quartz-leucoxene rougher concentrate chemical and mineral composition. Obogashchenie Rud. 2015. No. 5. pp. 20–27. DOI: 10.17580/or.2015.05.05.
18. Chen J., Chang F., Chang C. Chlorination kinetics of silicon dioxide in the presence of carbon. Industrial & Engineering Chemistry Research. 1990. No. 29. pp. 778–783.
19. Levenspiel О. Chemical reaction engineering. Moscow : Khimiya, 1969. 620 p.
20. Smith K. A., Riemer S. C., Iwasaki I. Carbochlorination of aluminum from non-bauxite sources. JOM. 1982. Vol. 34. pp. 59–62.
21. Grob B., Richarz W. Chlorination of alumina in kaolinitic clay. Metallurgical Transactions B. 1984. Vol. 15. pp. 529–533.
22. Zanaveskin K. L., Dmitriev G. S., Zanaveskin L. N., Maslennikov A. N., Zanaveskina S. M. et al. Leaching SiO2 and Al2O3 impurities from leucoxene from Yaregskoe deposite by sodium hydroxide solution. Theoretical Foundations of Chemical Engineering. 2019. No. 53. pp. 669–679.
23. Zanaveskin К. L., Maslennikov А. N., Makhin M. N., Zanaveskin L. N. Influence of granulometric composition on leucoxene concentrate processing with titanium tetrachloride obtaining (Yaregskoye deposit). Tsvetnye Metally. 2016. No. 10. pp. 79–85. DOI: 10.17580/tsm.2016.10.11.
24. Zanaveskin К. L., Maslennikov А. N., Zanaveskina S. М., Vlasenko V. I. Reaction ability of titanium-bearing raw materials during the titanium tetrachloride obtaining. Tsvetnye Metally. 2017. No. 4. pp. 47–53. DOI: 10.17580/tsm.2017.04.07.
25. Barin I., Schuler W. On the kinetics of the chlorination of titanium dioxide in the presence of solid carbon. Metallurgical and Materials Transactions B. 1980. No. 11. pp. 199–207.
26. Amorebieta V. T., Colussi A. J. Direct study of the catalytic decomposition of chlorine and chloromethanes over carbon films. International Journal of Chemical Kinetics. 1985. No. 17. pp. 849–858.
27. Pasquevich D. M., Gamboa J. J., Caneiro A. On the role of carbon in the carbochlorination of refractory oxides. Thermochimica Acta. 1992. No. 209. pp. 209–222.
28. Ogryzlo E. A. Halogen atom reactions: I. The electrical discharge as a source of halogen atoms. Canadian Journal of Chemistry. 1961. No. 39. pp. 2556–2562.
29. Kota G. P., Coburn J. W., Graves D. B. The recombination of chlorine atoms at surfaces. Journal of Vacuum Science and Technology. 1998. No. 16. pp. 270–277.
30. Ma T., List T., Arora P., Donnelly V. M. Recombination coefficients for Cl on plasma-conditioned yttrium oxide chamber wall surfaces. Journal of Applied Physics. 2019. No. 125. 023301.
31. Sitanov D. V., Pivovarenok S. A. Kinetics of atomic recombination on silicon samples in chlorine plasma. Plasma Physics Reports. 2018. Vol. 44, No. 8. pp. 713–722.
32. Karapetyants М. Kh., Karapetyants М. L. Basic thermodynamic constants of inorganic and organic substances. Moscow : Khimiya, 1968. 472 p.
33. Andrade-Gamboa J., Pasquevich D. M. A model for the role of carbon on carbochlorination of TiO2. Metallurgical and Materials Transactions B. 2000. No. 31. pp. 1439–1446.
34. Pasquevich D. M., Amorebieta V. T. Mass spectrometric study of volatile products during the carbochlorination of zirconia. Ber. Bunseiiges. Phys. Chem. 1992. Vol. 96, No. 4. pp. 530–533.
35. Jena P. K., Brocchi E. D., Reis M. L. Kinetics of chlorination of zirconia in mixture with petroleum coke by chlorine gas. Metallurgical and Materials Transactions B. 1999. No. 30. pp. 375–381.
36. Ojeda M. W., Rivarola J. B., Quiroga O. Study on chlorination of molybdenum trioxide mixed with carbon black. Minerals Engineering. 2002. No. 15, Iss. 5. pp. 585–591.
37. Pomiro F. J., Fouga G. G., Gaviría J. P., Bohé A. E. Study of the reaction stages and kinetics of the europium oxide carbochlorination. Metallurgical and Materials Transactions B. 2015. No. 46. pp. 304–315.

38. González J. A., Del M. C., Ruiz C., Rivarola J. B., Pasquevich D. M. Effects of heating in air and chlorine atmosphere on the crystalline structure of pure Ta2 a O5 or mixed with carbon. Journal of Materials Science. 1998. No. 33. pp. 4173–4180.
39. Yang F., Hlavácek V. Carbochlorination of tantalum and niobium oxides: Thermodynamic simulation and kinetic modeling. Aiche Journal. 1999. No. 45. pp. 581–589.
40. Esquivel M. R., Bohé A. E., Pasquevich D. M. Carbochlorination of cerium dioxide. Mineral Processing and Extractive Metallurgy. 2002. Vol. 111, Iss. 3. pp. 149–155.
41. Yang F., Hlavácek V. Carbochlorination of tantalum and niobium oxides: Thermodynamic simulation and kinetic modeling. Aiche Journal. 1999. No. 45. pp. 581–589.
42. Ivanov V. Chlorination in salt melt in the technology of production of poly crystalline silicon. Elektronika: nauka, tekhnologiya, biznes. 2019. No. 6. pp. 154–160.
43. Morris A. J., Jensen R. F. Fluidized-bed chlorination rates of australian rutile. Metallurgical and Materials Transactions B. 1976. No. 7. pp. 89–93.
44. Yang F., Hlavácek V. Carbochlorination kinetics of titanium dioxide with carbon and carbon monoxide as reluctant. Metallurgical and Materials Transactions B. 1998. No. 29. pp. 1297–1307.
45. Sohn H. Y., Zhou L. The kinetics of carbochlorination of titania slag. Canadian Journal of Chemical Engineering. 1998. No. 76. pp. 1078–1082.
46. Niu L., Ni P., Zhang T., Lv G., Zhou A. et al. Mechanism of fluidized chlorina tion reaction of Kenya natural rutile ore. Rare Metals. 2014. No. 33. pp. 485–492.
47. El-Sadek M. H., Fouad O. F., Morsi M. B., El-Barawy K. A. Controlling conditions of fluidized bed chlorination of upgraded titania slag. Transactions of the Indian Institute of Metals. 2018. No. 72. pp. 423–427.
48. McCoy D., Coetzee B., Keegal M., Bender E. Titanium feedstocks – opaque quality requirements. Proceedings Eighth International Heavy Minerals Conference (The Australasian Institute of Mining and Metallurgy, Melbourne). 2011. pp. 197–203.
49. Moodley S., Kale A., Bessinger D. J., Küçü K kkaragöz C. S., Eric R. H. Fluidi zation behaviour of various titania feedstocks. Journal of The South African Institute of Mining and Metallurgy. 2012. No. 112. pp. 467–471.
50. Zanaveskin К. L., Zanaveskina S. М., Maslennikov А. N., Politova E. D., Vlasenko V. I. et al. Activation of quartz-leucoxene concentrate for processing into titanium tetrachloride. Zhurnal prikladnoy khimii. 2016. Vol. 89, No. 11. pp. 1361–1367.

Language of full-text русский
Полный текст статьи Получить