Журналы →  Tsvetnye Metally →  2022 →  №8 →  Назад

LIGHT METALS, CARBON MATERIALS
Название Recycling of alumina-containing sweepings for use in primary aluminium production
DOI 10.17580/tsm.2022.08.02
Автор Burdonov A. E., Zelinskaya E. V., Nemchinova N. V., Novikov Yu. V.
Информация об авторе

Irkutsk National Research Technical University, Irkutsk, Russia:

A. E. Burdonov, Associate Professor at the Department of Mineral Processing and Environmental Protection Named after S. B. Leonov, Candidate of Technical Sciences, e-mail: slimbul@inbox.ru
E. V. Zelinskaya, Professor at the Department of Mineral Processing and Environmental Protection Named after S. B. Leonov, Doctor of Technical Sciences, e-mail: zelinskaelena@mail.ru
N. V. Nemchinova, Head of the Department of Non-Ferrous Metallurgy, Doctor of Technical Sciences, Professor, e-mail: ninavn@yandex.ru
Yu. V. Novikov, Postgraduate Student at the Department of Mineral Processing and Environmental Protection Named after S. B. Leonov, e-mail: 89500505553r@gmail.com

Реферат

Aluminium is produced by electrolysis using a melt that consists of cryolite and alumina. Domestic aluminium producers are facing a shortage of alumina, which is the raw material for making primary aluminium. This gives relevance to the problem of processing industrial alumina-containing waste in order to get Al2O3 back into the electrolysis process. When doing maintenance for aluminium cells, primary aluminium producers that rely on Soderberg cells generate alumina-containing waste with a complex and varying composition. However, it contains a considerable amount of valuable components, such as Na3AlF6, Al2O3, AlF3. When the waste is collected, valuable alumina particles get mixed up with various materials (lumps of asphalt and concrete, sand). As a result, alumina gets contaminated with iron and silicon compounds (SiO2, Fe2O3) and can no longer be reused in the electrolysis process as the main source of metal. RUSAL Bratsk PJSC has developed a unit that helps reduce the concentration of these impurities in the alumina-containing waste. The focus of this paper is on examining the operation of the developed unit, as well as searching for contrast properties of the waste material which could help enhance the performance of the unit. Having analyzed the phase composition of the samples, the authors established that the waste material is mainly comprised of cryolite, chiolite, corundum, quartz, feldspar, carbonaceous matter and a process phase of the following composition: (NaF)·1,5CaF2·AlF3. High concentrations of Si (1.91 %) and Fe (0.62 %) were registered in the following size range –0.63+0.315 mm. A microscopic study helped establish the contrast properties of the material. It was found that, considering the registered distribution of impurities, reusing the maximum amount of waste in the electrolysis process would require adoption of optical and gravitational processing. The contributors to this research includes L. V. Gavrilenko, Candidate of Technical Sciences, manager at the Directorate for Aluminium Production Processes and Advances, Engineering and Technology Centre (RUSAL ETC) in Bratsk.
This research was funded through Presidential Grant No. SP-306.2022.1.

Ключевые слова Aluminium production, secondary raw material, alumina-containing sweepings, chemical composition, impurities, purification, mineralogical study, electrolysis
Библиографический список

1. Nemchinova N. V., Shumilova L. V., Salkhofer S. P., Razmakhnin K. K., Chernova O. A. A comprehensive, sustainable waste management. Metallurgical industry: Learner’s guide. Moscow : Izdatelskiy dom Akademii Estestvoznaniya, 2016. 494 p.
2. Holywell G., Breault R. An overview of useful methods to treat, recover, or recycle spent potlining. JOM. 2013. Vol. 65, Nо. 11. pp. 1441–1451. DOI: 10.1007/s11837-013-0769-y.
3. Solheim A., Skybakmoen Е. The future of the Hall-Héroult technology. Non-Ferrous Metals and Minerals. 2018. pp. 300–309.
4. Galevskiy G. V., Kulagin N. M., Mintsis M. Ya. Ecology and waste management in aluminium industry. Novosibirsk : Nauka, Sibirskoe pred priyatie RAN, 1997. 155 p.
5. Nemchinova N. V., Tyutrin A. A., Barauskas A. E. Analysing the chemical composition of man-made materials resultant from the production of primary aluminium in order to find cost-effective recycling techniques. Tsvetnye Metally. 2019. No. 12. pp. 22–29. DOI: 10.17580/tsm.2019.12.03.
6. Zenkin E. Yu., Gavrilenko A. A., Nemchinova N. V. On the processing of primary aluminium production waste at RUSAL BRATSK. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2017. Vol. 21, No. 3. pp. 123–132. DOI: 10.21285/1814-3520-2017-3-123-132.
7. Belykh L. I., Maksimova M. A. Ecological modernization of the Irkutsk Aluminium Smelter and its effect on the carcinogenic risks for Shelekhov. Ekologiya i promyshlennost Rossii. 2018. Vol. 22, No. 9. pp. 8–13. DOI: 10.18412/1816-0395-2018-9-8-13.
8. Kovács V. B., Kiss L. I. Comparative analysis of the environmental impacts of aluminum smelting technologies. Light Metals. 2015. pp. 529–534. DOI: 10.1007/978-3-319-48248-4_88.
9. Mann V., Buzunov V., Pingin V., Zherdev A., Grigoriev V. Environmental aspects of UC RUSAL’S aluminum smelters sustainable development. Light Metals. 2019. pp. 553–563. DOI: 10.1007/978-3-030-05864-7_70.
10. Mann V., Buzunov V., Pitertsev N., Chesnyak V., Polyakov P. Reduction in power consumption at UC RUSAL’s smelters 2012–2014. Light Metals. 2015. pp. 757–762. DOI: 10.1007/978-3-319-48248-4_128.
11. Nemchinova N. V., Tyutrin A. A., Somov V. V. Study of influence of parameters of leaching fluorine from spent pot lining. Materials Science Forum. 2019. Vol. 946. pp. 552–557. DOI: 10.4028/www.scientific.net/MSF.946.552.
12. Zhao X., Ma L. Hazardous waste treatment for spent pot liner. IOP Conference Series: Earth and Environmental Science. 2018. Vol. 108. p. 042023. DOI: 10.1088/1755-1315/108/4/042023.
13. Patrin R. K., Bazhin V. Yu. Spent linings from aluminum cells as a raw material for the metallurgical, chemical, and construction industries. Metallurgist. 2014. Vol. 58, Iss. 7-8. pp. 625–629. DOI: 10.1007/s11015-014-9967-2.
14. Shepelev I. I., Golovnykh N. V., Sakhachev A. Yu., Zhizhaev A. M., Kotlyagin A. G. The quality of limestone-nepheline cake improved through the introduction of man-made gypsum-anhydrite material. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2018. Vol. 22, No. 5. pp. 225–239. DOI: 10.21285/1814-3520-2018-5-225-239.
15. Bazhin V. Yu., Brichkin V. N., Sizyakov V. M., Cherkasova M. V. Pyrometallurgical treatment of a nepheline charge using additives of natural and technogenic origin. Metallurgist. 2017. Vol. 61, Iss.1. pp. 147–154. DOI: 10.1007/s11015-017-0468-y.
16. Jassim A., Jabri N. A., Rabbaa S. A., Mofor E. G., Jamal J. Innovative anode coating technology to reduce anode carbon consumption in aluminum electrolysis cells. Minerals, Metals and Materials Series. 2019. pp. 745–752. DOI: 10.1007/978-3-030-05864-7_91.
17. Medvedev V. V., Akhmedov S. N. Evolution of the technology for the production of alumina from bauxites. Light Metals. 2014. pp. 5–9. DOI: 10.1007/978-3-319-48144-9_1.
18. Burdonov A., Barakhtenko V., Prokhorov K., Novikov Y. Features of metallurgy waste mainly processing with account for raw material contrast. E3S Web of Conferences. 2020. Vol. 192. p. 02026. DOI: 10.1051/e3sconf/202019202026.
19. Petrovskiy A. A., Nemchinova N. V., Rzhechitskiy E. P. Understanding the process of recovering fluorine from spent refractory potlining. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2018. Vol. 22, No. 8. pp. 151–162. DOI: 10.21285/1814-3520-2018-8-151-162.
20. Sanderson E. G., Kelly P. J., Farant J.-P. Effect of Söderberg smelting technology, anode paste composition, and work shift on the relationship between benzo[a]pyrene and individual polycyclic aromatic hydrocarbons. Journal of Occupational and Environmental Hygiene. 2005. Vol. 2, Iss. 2. pp. 65–72. DOI: 10.1080/15459620590906801.
21. Gao S., Xue J., Lang G., Liu R.et al. Experimental study on preparation of prebake anodes with high sulfur petroleum coke desulfurized at high temperatures. Light Metals. 2019. pp. 1301–1309. DOI: 10.1007/978-3-030-05864-7_160.
22. Tang Y., Li Y., Shi Y., Wang Q. et al. Environmental and economic impacts assessment of prebaked anode production process: A case study in Shandong Province, China. Journal of Cleaner Production. 2018. No. 196. pp. 1657–1668. DOI: 10.1016/j.jclepro.2018.06.121.
23. Burdonov A. E., Zelinskaya E. V., Gavrilenko L. V., Gavrilenko A. A. Investigation of substantial composition of alumina-bearing material of aluminium electrolysers for usage in primary aluminium technology. Tsvetnye Metally. 2018. No. 3. pp. 32–38. DOI: 10.17580/tsm.2018.03.05.
24. Burdonov A. E., Barakhtenko V. V., Zelinskaya E. V., Gavrilenko L. V. A contrast study of alumina-containing sweepings to assess the applicability of photometric separation. Obogashchenie Rud. 2021. No. 6. pp. 34–41. DOI: 10.17580/or.2021.06.06.
25. Vasyunina N. V., Dubova I. V., Belousov S. V., Sharypov N. A. Recycling of electrolytic aluminum production sweepings. Obogashchenie Rud. 2019. No. 2. pp. 39–44. DOI: 10.17580/or.2019.02.07.
26. Burdonov A. E., Zelinskaya E. V. Complex technology development for processing secondary raw materials of aluminum production for use in the electrolysis process. IMPC 2018 — 29th International Mineral Processing Congress 2019. pp. 3028–3035.
27. Fedotov K. V., Senchenko A. E., Kulikov Yu. V. Calculating the specific energy of autogenous/semi-autogeous grinding process using a combination of Bond work indices. Gornyy informatsionno-analiticheskiy byulleten. 2014. No. 11. pp. 127–140.
28. Aleksandrov A. V., Nemchinova N. V., Mineev G. G., Yakovleva A. A. Evaluation оf the effect of nepheline sinter structure on hydration activity during alumina production. Metallurgist. 2018. Vol. 61, Iss. 1-2. pp. 1016–1022. DOI: 10.1007/s11015-018-0601-6.
29. Vlasov A. A., Sizyakov V. M., Bazhin V. Yu. Use of sandy alumina for aluminium production. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2017. Vol. 21, No. 6. pp. 111–118. DOI: 10.21285/1814-3520-2017-6-111-118.
30. Aleksandrov A. V., Nemchinova N. V. Calculating the expected cost effectiveness of aluminium production when using more domestically produced alumina. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2020. Vol. 24, No. 2. pp. 408–420. DOI: 10.21285/1814-3520-2020-2-408-420.
31. Burdonov A. On the use of photometric separation for the processing of techno-genic raw materials. Solid State Phenomena. 2021. Vol. 316. pp. 346–352. DOI: 10.4028/www.scientific.net/SSP.316.346.
32. Senchenko A. E., Kulikov Y. V., Starkey J. Successful implementation of sag design test in designing and optimization of ore preparation circuits in the territory of Russia and Kazakhstan. 26th International Mineral Processing Congress, IMPC 2012: Innovative Processing for Sustainable Growth – Conference Proceedings. 2012. pp. 4857–4864.
33. Burdonov A. E., Barakhtenko V. V., Prokhorov K. V., Gavrilenko A. A. Results of studies of disintegration working indices for alumina-containing wastes. Obogashchenie Rud. 2018. No. 4. pp. 11–16. DOI: 10.17580/or.2018.04.03.
34. Burdonov A. E., Fedotov P. K., Novikov Y. V., Garashchenko A. A. et al. Influence of temperature on the strength of alumina-containing raw materials. Metalurgija. 2021. Vol. 60, Iss. 3-4. pp. 415–418.
35. Burdonov A. E., Barakhtenko V. V., Zelinskaya E. V., Gavrilenko A. A. Purification of alumina-containing sweepings by dry air classification. Izvestiya vuzov. Tsvetnaya metallurgiya. 2021. Vol. 27, No. 3. pp. 73–84. DOI: 10.17073/0021-3438-2021-3-73-84.

Language of full-text русский
Полный текст статьи Получить
Назад