Journals →  Obogashchenie Rud →  2022 →  #2 →  Back

ArticleName The potential of obtaining ilmenite concentrate from titanomagnetite ore tailings
DOI 10.17580/or.2022.02.08
ArticleAuthor Pelevin A. E., Shigaeva V. N.

Ural State Mining University (Ekaterinburg, Russia):

Pelevin A. E., Professor, Doctor of Engineering Sciences, Associate Professor,


JSC «Uralmekhanobr» (Ekaterinburg, Russia):
Shigaeva V. N., Researcher


Titanomagnetite and ilmenite are the primary titanomagnetite ore minerals of the Gusevogorsk deposit. Due to its low mass fraction in the ore (approximately 1 %), ilmenite is treated as waste during ore processing. The purpose of this research was to assess if titanomagnetite ores of the Gusevogorsk deposit could be used to obtain highgrade ilmenite concentrate with a TiO2 mass fraction of at least 48 %. With the expected low yield of the secondary (ilmenite) con-centrate, the tailings processing system at the existing concentrator should be simple and should not include regrinding of non-magnetic products downstream of wet magnetic separation. This is a mandatory precondition for the profitable production of ilmenite concentrates. Taking into account the low content of ilmenite in the original ore, a combined system was selected, based on the technologies of magnetic and electric separation and gravity concentration. The process shall consist of six successive operations, namely: high gradient magnetic separation, wet magnetic separation, fine screening, table concentration, drying, and electric separation. Pilot processing of wet magnetic separation tailings without additional grinding delivered high-grade ilmenite concentrates with a mass fraction of titanium dioxide of 48.66 % and a yield of 0.13 % to ore. With lower yields, higher-grade concentrate (50.87 % TO2) may be obtained. Titanomagnetite middlings were also produced, with a mass fraction of iron of 52.12 % and a yield of 0.46 % to ore. Their further grinding and processing will additionally improve the titanomagnetite concentrate yield. A final conclusion on the applicability of the technology designed for obtaining ilmenite concentrate from titanomagnetite wet magnetic separation tailings should be made following a respective feasibility study.

keywords Ilmenite, titanomagnetite, high-gradient magnetic separation, gravity separation, electrical separa-tion, titanium dioxide

1. Sadykhov G. B. Fundamental problems and prospects for the use of titanium raw materials in Russia. IzvestiyaVysshikh Uchebnykh Zavedeniy. Chernaya Metallurgiya. 2020. Vol. 63, No. 3–4. pp. 178–194.
2. Gazaleeva G. I., Shikhov N. V., Sopina N. A., Mushketov A. A. The modern trends in processing the titaniumcontaining ores. Chernaya Metallurgiya. Byulleten' Nauchnotekhnicheskoy i Ekonomicheskoy Informatsii. 2015. No. 12. pp. 30–36.
3. Jianwu Zeng, Luzheng Chen, Ruoyu Yang, Xiong Tong, Peng Ren, Yongming Zheng. Centrifugal high gradient magnetic separation of fine ilmenite. International Journal of Mineral Processing. 2017. Vol. 168. pp. 48–54.
4. Shuaiping Shen, Zhitao Yuan, Jiongtian Liu, Qingyou Meng, Haiqing Hao. Preconcentration of ultrafine ilmenite ore using a superconducting magnetic separator. Powder Technology. 2020. Vol. 360. pp. 1–9.
5. Yuhua Wang, Zixing Xue, Xiayu Zheng, Dongfang Lu, Zixi Sun. Matching relation between matrix aspect ratio and applied magnetic induction for maximum particle capture in transversal high gradient magnetic separation. Minerals Engineering. 2020. Vol. 151. DOI: 10.1016/j.mineng.2020.106316.
6. Nienaber E. C., McCoy J. T., Auret L. Spiral concentrator interface monitoring through image processing: A statistical learning approach. IFAC-PapersOnLine. 2017. Vol. 50, Iss. 2. pp. 53–58.
7. Degodya E. Yu., Shavakuleva O. P. Elaboration of a technology for production conditional ilmenite concentrate by enrichment of titanium-magnetite ores. Chernaya Metallurgiya. Byulleten' Nauchno-tekhnicheskoy i Ekonomicheskoy Informatsii. 2019. Vol. 75, No. 5. pp. 572–577.
8. Gibson C. E., Hansuld R., Kelebek S., Aghamirian M. Behaviour of ilmenite as a gangue mineral in the benzohydroxamic flotation of a complex pyrochlore-bearing ore. Minerals Engineering. 2017. Vol. 109. pp. 98–108.
9. Pan Chen, Jihuа Zhai, Wei Sun, Yuehua Hu, Zhigang Yin. The activation mechanism of lead ions in the flotation of ilmenite using sodium oleate as a collector. Minerals Engineering. 2017. Vol. 111. pp. 100–107.
10. Shaojun Bai, Pan Yu, Zhan Ding, Yunxiao Bi, Chunlong Li, Dandan Wu, Shuming Wen. New insights into lead ions activation for microfine particle ilmenite flotation in sulfuric acid system: Visual MINTEQ models, XPS, and ToF–SIMS studies. Minerals Engineering. 2020. Vol. 155. DOI: 10.1016/j.mineng.2020.106473.
11. Jiaozhong Cai, Jiushuai Deng, Hongying Yang, Linlin Tong, Dandan Wu, Shuming Wen, Zilong Liu, Ying Zhang. A novel activation for ilmenite using potassium permanganate and its effect on flotation response. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020. Vol. 604. DOI: 10.1016/j.colsurfa.2020.125323.
12. Yan Xing, Wang Haifeng, Peng Zhen, Hao Juan, Zhang Guangwen, Xie Weining, He Yaqun. Triboelectric properties of ilmenite and quartz minerals and investigation of triboelectric separation of ilmenite ore. International Journal of Mining Science and Technology. 2018. Vol. 28, Iss. 2. pp. 223–230.
13. Azbel Yu. I., Dmitriyev S. V., Mezenin A. O., Bukharov M. I. The Butkinsky Mining and Processing Complex rougher concentrate flow sheet development with a view to produce marketable ilmenite product. Obogashchenie Rud. 2015. No. 1. pp. 14–15.
14. Urvantsev A. I., Shikhov N. V., Zaitsev G. V. Research results and practice of mineral raw material beneficiation by electric separation. Izvestiya Vysshikh Uchebnykh Zavedenii. Gornyi Zhurnal. 2005. No. 5. pp. 37–51.
15. Pelevin A. E., Tsypin E. F., Koltunov A. V., Komlev S. G. High-intensity magnetic separators with permanent magnets. Izvestiya Vysshikh Uchebnykh Zavedenii. Gornyi Zhurnal. 2001. No. 4–5. pp. 133–136.
16. Vaisberg L. A., Dmitriev S. V., Mezenin A. O. Controllable magnetic anomalies in mineral processing technologies. Gornyi Zhurnal. 2017. No. 10. pp. 26–32. DOI: 10.17580/gzh.2017.10.06.
17. Pelevin A. E., Sytykh N. A. Increased magnetic field induction separators in titanium magnetite ore processing. Obogashchenie Rud. 2020. No. 2. pp. 15–20. DOI: 10.17580/or.2020.03.02.
18. Vaisberg L. A., Korovnikov A. N., Trofimov V. A. Innovative re-equipment of screening circuits (to commemorate the 100th anniversary of the Mekhanobr Institute). Gornyi Zhurnal. 2017. No. 1. pp. 11–17. DOI: 10.17580/gzh.2017.01.02.
19. Pelevin A. E., Sytykh N. A. Fine hydraulic screening for staged separation of titanium-magnetite concentrate. Obogashchenie Rud. 2021. No. 1. pp. 8–14. DOI: 10.17580/or.2021.01.02.
20. Pelevin A. E. Effects of magnetic flocculation on ironbearing ore concentration. Obogashchenie Rud. 2021. No. 4. pp. 15–20. DOI: 10.17580/or.2021.04.03.
21. Fominykh V. G., Kraeva Yu. P., Larina N. V. Petrology and ore genesis of the Kachkanar massif. Sverdlovsk: Publishing House of RISO UNC of the USSR Academy of Sciences, 1987. 180 p.

Language of full-text russian
Full content Buy