Журналы →  Obogashchenie Rud →  2022 →  №2 →  Назад

Название Specific development features of secondary gold mineralization in mature tailings of gold processing plants
DOI 10.17580/or.2022.02.05
Автор Borisov R. V., Zhizhaev A. M., Bragin V. I., Likhatsky M. N.
Информация об авторе

Siberian Federal University (Krasnoyarsk, Russia):

Borisov R. V., Associate Professor, Candidate of Chemical Sciences, roma_boris@list.ru

Bragin V. I., Head of Chair, Doctor of Engineering Sciences, Professor


Institute of Chemistry and Chemical Technology of the Siberian Branch of the RAS (Krasnoyarsk, Russia):
Zhizhaev A. M., Leading Researcher, Candidate of Engineering Sciences
Likhatsky M. N., Senior Researcher, Candidate of Chemical Sciences


The paper studies the development of secondary gold mineralization driven by the interaction of gold-bearing solutions with primary minerals in sulfide and oxidized ore processing tailings, as well as with secondary limonite formed during their long-term storage. Lowtemperature gas adsorption was used to establish that such tailings are characterized by high specific surface areas of up to 20 m2/g. Material surface area may play an important role in the processes of sorption and reduction. Using X-ray photoelectron spectroscopy, it has been established that secondary mineralization gold predominantly occurs in its elemental form, with a subordinate amount of the occluded ionic form of Au(I). It has been shown that Au(III) ions selectively precipitate from solutions at 25 °C and pH 6.9–7.3 on pyrite, arsenopyrite, and limonite, forming individual metal particles of 30–1000 nm, as well as mineral aggregates of complex structure and composition, including oxidized antimony minerals, limonite, and nanodispersed gold. Gold precipitation on a mixture of hydrates of iron and manganese oxides was found in samples of oxidized ore processing tailings. The specific morphology and grain-size distribution of secondary gold particles on various carrier minerals and the composition of new formations have been studied. On the secondary limonite, containing calcite (up to 10 wt%) and quartz impurities, the gold particles are up to 500 nm and are uniformly distributed over the entire material surface. This is in contrast to the sulfide and oxidized ore processing tailings, where gold was selectively reduced on certain minerals. The paper considers the potential mechanisms of gold reduction on the surfaces of oxidized minerals.
The work patially was carried out within the framework of the state assignment of the Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences (project No. 0287-2021-0014) using the equipment of the Federal Research Center «Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences».

Ключевые слова Gold tailings, gold precipitation, secondary phases, limonite, X-ray photoelectron spectroscopy, morphological features, pyrite, scanning electron microscopy
Библиографический список

1. Chanturia V. A., Kozlov A. P., Matveeva T. N., Lavrinenko A. A. Innovative technologies and extraction of commercial components from unconventional and difficultto-process minerals and mining-and-processing waste. Fizikotekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2012. No. 5. pp. 144–156.
2. Gurin K. K., Bashlykova T. V., Ananev P. P., Boboev I. R., Gorbunov E. P. Extraction of gold from the goldextraction plant tailings, formed as a result of processing of mixed refractory ores. Tsvetnye Metally. 2013. No. 5. pp. 41–45.
3. Qin H., Guo X., Tian Q., Zhang L. Pyrite enhanced chlorination roasting and its efficacy in gold and silver recovery from gold tailing. Separation and Purification Technology. 2020. Vol. 250. DOI: 10.1016/j.seppur.2020.117168.
4. Sanakulov K. S., Khamroev I. O. Prospects, properties and formation of nanogold. Typification of ultrafine (nano) gold-bearing ores. Classification of forms of natural gold exposure presence with agregation of free nanogold. Tsvetnye Metally. 2021. No. 9. pp. 4–10. DOI: 10.17580/tsm.2021.09.01.

5. Koyzhanova A. K., Arystanova G. A., Sedelnikova G. V., Esimova D. M. Investigation of biohydrometallurgical technology of gold extraction from gold mining factory sorption tailings. Tsvetnye Metally. 2016. No. 9. pp. 52–57. DOI: 10.17580/tsm.2016.09.07.
6. Bragin V. I., Makarov V. A., Usmanova N. F., Samorodskii P. N., Lobastov B. M., Vashlaev A. I. Mineralogical examination of gold processing plant tailings. Fizikotekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2019. No. 1. pp. 163–171.
7. Meretukov M. A., Gurin K. K. Behavior of gold in tailing dumps. Tsvetnye Metally. 2011. No. 7. pp. 27–31.
8. Hough R. M., Noble R. R. P., Reich M. Natural gold nanoparticles. Ore Geology Reviews. 2011. Vol. 42, No. 1. pp. 55–61.
9. Myagkaya I. N., Saryg-ool B. Y., Surko O. N., Zhmodik S. M., Lazareva E. V., Taran O. P. Natural organic matter from the dispersion train of gold sulfide tailings: group composition and fractionation of elements: case study of Ursk tailings, Kemerovo region, Siberia. Geochemistry: Exploration, Environment, Analysis. 2021. Vol. 21. DOI: 10.1144/geochem2020-052.
10. Myagkaya I. N., Lazareva E. V., Zhmodik S. M., Zaikovskii V. I. Interaction of natural organic matter with acid mine drainage: Authigenic mineralization (case study of Ursk sulfide tailings, Kemerovo region, Russia). Journal of Geochemical Exploration. Vol. 211. DOI: 10.1016/j.gexplo.2019.106456.
11. Mikhailov A. G., Kharitonova M. Y., Vashlaev I. I., Sviridova M. L. Mobility of water-soluble nonferrous and precious metals in aged mineral processing waste. Fizikotekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2013. No. 3. pp. 188–196.
12. Shuster J., Reith F., Cornelis G., Parsons J. E.,Parsons J. M., Southam G. Secondary gold structures: Relics of past biogeochemical transformations and implications for colloidal gold dispersion in subtropical environments. Chemical Geology. 2017. Vol. 450. pp. 154–164.
13. Daniel M. C., Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews. 2004. Vol. 104, No. 1. pp. 293–346.
14. Greffié C., Benedetti M. F., Parron C., Amouric M. Gold and iron oxide associations under supergene conditions: An experimental approach. Geochimica et Cosmochimica Acta. 1996. Vol. 60, No. 9. pp. 1531–1542.
15. Borisov R. V., Belousov O. V., Zhizhaev A. M., Belousova N. V., Kirik S. D. Carbon-supported palladium–gold bimetallic disperse systems formed in aqueous solutions at 110 °C. Zhurnal Neorganicheskoy Khimii. 2018. Vol. 63, No. 3. pp. 289–295.
16. Mikhlin Y. L., Romanchenko A. S. Gold deposition on pyrite and the common sulfide minerals: An STM/STS and SR-XPS study of surface reactions and Au nanoparticles. Geochimica et Cosmochimica Acta. 2007. Vol. 71, Iss. 24. pp. 5985–6001.
17. Mycroft J. R., Bancroft G. M., McIntyre N. S., Lorimer J. W. Spontaneous deposition of gold on pyrite from solutions containing Au(III) and Au(I) chlorides. Part I: A surface study. Geochimica et Cosmochimica Acta. 1995. Vol. 59, Iss. 16. pp. 3351–3365.
18. Maddox L. M., Bancroft G. M., Scaini M. J., Lorimer J. W. Invisible gold: Comparison of Au deposition on pyrite and arsenopyrite. American Mineralogist. 1998. Vol. 83, No. 12. pp. 1240–1245.
19. Moeller P., Kersten G. Electrochemical accumulation of visible gold on pyrite and arsenopyrite surfaces. Mineralium Deposita. 1994. Vol. 29, No. 5. pp. 404–413.
20. Chen J., Li. Y., Zhao C. First principles study of the occurrence of gold in pyrite. Computational Materials Science. 2014. Vol. 88. pp. 1–6.
21. Fu Y., Nie X., Qin Z., Li S., Wan Q. Effect of particle size and pyrite oxidation on the sorption of gold nanoparticles on the surface of pyrite. Journal of Nanoscience and Nanotechnology. 2017. Vol. 17, No. 9. pp. 6367–6376.
22. Pokrovski G. S., Kokh M. A., Proux O., Hazemann J. L., Bazarkina E. F., Testemale D., Thibaut M. The nature and partitioning of invisible gold in the pyrite-fluid system. Ore Geology Reviews. 2019. Vol. 109. pp. 545–563.
23. Schoonen M. A., Fisher N. S., Wente M. Gold sorption onto pyrite and goethite: A radiotracer study. Geochimica et Cosmochimica Acta. 1992. Vol. 56, No. 5. pp. 1801–1814.
24. Berrodier I., Farges F., Benedetti M., Winterer M., Brown Jr. G. E., Deveughèle M. Adsorption mechanisms of trivalent gold on iron- and aluminum-(oxy)hydroxides. Part 1: X-ray absorption and Raman scattering spectroscopic studies of Au(III) adsorbed on ferrihydrite, goethite, and boehmite. Geochimica et Cosmochimica Acta. 2004. Vol. 68. pp. 3019–3042.
25. Campo B. C., Rosseler O., Alvarez M., Rueda E. H., Volpe M.A. On the nature of goethite, Mn-goethite and Co-goethite as supports for gold nanoparticles. Materials Chemistry and Physics. 2008. Vol. 109, No. 2–3. pp. 448–454.
26. Machesky M. L., Andrade W. O., Rose A. W. Adsorption of gold(III)-chloride and gold(I)-thiosulfate anions by goethite. Geochimica et Cosmochimica Acta. 2001. Vol. 55, No. 3. pp. 769–776.
27. Ran Y., Fu J., Rate A. W., Gilkes R. J. Adsorption of Au (I, III) complexes on Fe, Mn oxides and humic acid. Chemical Geology. 2002. Vol. 185, No. 1–2. pp. 33–49.
28. Gao Z. L., Kwak T. A. P., Changkakoti A., Hussein E., Gray J. Supergene ore and hypogenenon ore mineralization at the Nagambie sediment-hosted gold deposit, Victoria, Australia. Economic Geology. 1995. Vol. 90, No. 6. pp. 1747–1763.
29. Celep O., Serbest V. Characterization of an iron oxy/hydroxide (gossan type) bearing refractory gold and silver ore by diagnostic leaching. Transactions of Nonferrous Metals Society of China. 2015. Vol. 25, No. 4. pp. 1286–1297.
30. Borisov R. V., Bragin V. I., Usmanova N. F., Plotnikova A. A. Occurrence and Mobility of Gold in Old Milltailings. Fiziko-tekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2020. No. 1. pp. 138–147.
31. Fu Y., Wan Q., Qin Z., Nie X., Yu W., Li S. The effect of pH on the sorption of gold nanoparticles on illite. Acta Geochimica. 2020. Vol. 39, No. 2. pp. 172–180.
32. Roslyakov N. A., Belevantsev V. I., Kalinin Yu. A. Supergene gold in manganese-bearing weathered rocks. Geokhimiya. 2005. No. 9. pp. 1015–1018.

Language of full-text русский
Полный текст статьи Получить