Журналы →  Gornyi Zhurnal →  2022 →  №4 →  Назад

FROM THE OPERATIONAL EXPERIENCE OF THE MINING COMPANIES AND THE ORGANIZATIONS KHIAGDA JSC
Название Influence of acidulous groundwater on in-situ uranium leaching efficiency at Khiagda deposit
DOI 10.17580/gzh.2022.04.03
Автор Solodov I. N., Gladyshev A. V., Gurulev E. A., Suvorov A. V.
Информация об авторе

Atomredmetzoloto JSC, Moscow, Russia:

I. N. Solodov, Director of Innovative and Technological Development Programs, Doctor of Geological
and Mineralogical Science, INSolodov@armz.ru

 

VNIPIpromtekhnologii JSC, Moscow, Russia:

A. V. Gladyshev, CEO

 

Khiagda JSC, Chita, Russia:
E. A. Gurulev, Chief Engineer
A. V. Suvorov, Chief Geologist

Реферат

The article describes the abundance of acidulous hydrocarbonate–magnesium groundwater at uranium deposits in Khiagda ore field (KOF). It is emphasized that the hydrogeochemical specifics of KOF complicates uranium production by the method of in-situ leaching (ISL) and dictates application of nonconventional mode feeding of diluted sulfuring leaching solutions in water-bearing strata using a system of injection wells. Usually, in uranium recovery from hydrogenic rock masses by ISL, the spotlight is on the content of groundwater components which have an adverse influence on uranium adsorption at ion-exchange resins during processing of pregnant solutions. Meanwhile the chemical composition of groundwater remains beyond the scope of attention. The accomplished hydro-geochemical studies in KOF detect uranium bodies with high content of hydrocarbonate and dissolved carbon dioxide. Furthermore, the mechanisms and processes of reservoir and borehole gas and solid phase mudding are predicted and described, and the method of reducing the impact of these mechanisms and processes on ISL of uranium is proposed. The discussed illustration of influence exerted by acidulous groundwater on uranium recovery efficiency by ISL proves the importance of the hydro-geochemical studies using not the conventional approaches when volatiles are studied at the outlet of air-lift or pumping hydrogeology wells but by in-situ investigation of groundwater. Nonetheless, even the underestimated data on content of HCO3, as well as diluted and free СО2 in groundwater allow foreseeing the adverse effect of these components on performance of ISL of uranium.

Ключевые слова Hydrogenous uranium deposits, carbon dioxide–hydrocarbonate–magnesium groundwater, in-situ leaching, gas and solid phase mudding of sedimentaries
Библиографический список

1. Zamana L. V., Orgilyanov A. I., Kryukova I. G. New shows of dioxide carbon waters in Southeastern Transbaikalia. Uspekhi sovremennogo estestvoznaniya. 2017. No. 4. pp. 78–83.
2. Polyakov V. A., Sokolovskiy L. G. Genesis and dynamics of mineral water in the Caucasus from the radioactive and geochemical analysis. Moscow : Geoinformmark, 2005. 66 p.
3. Solodov I. N., Nesterova M. V. Carbonate Groundwater – An Ore-Preserving Factor at Uranium Deposits of The Khiagda Ore Field (Republic of Buryatia). Geology of Ore Deposit. 2021. Vol. 63. Iss. 1. pp. 134–144.
4. Avdonin G. I., Saltykov A. S., Prokhorov D. A., Solodov I. N. Mineability prospects of probable uranium resources in the Vitim area. Uranium : Geology, Resources and Production. The 5th International Symposium Proceedings. Moscow : VIMS, 2021.
5. Kislyakov Ya. M., Shchetochkin V. N. Hydrogenous ore formation. Moscow : Geoinformmark, 2000. 608 p.
6. In Situ Leach Uranium Mining: An Overview of Operations. IAEA Nuclear Energy Series NF-T-1.4. Viena : International Atomic Energy Agency, 2016. 60 p.
7. Uranium 2018: Resources, Production and Demand: A Joint Report by the NEA and IAEA. Paris : OECD Publishing, 2019. 460 p.
8. Makarov S. I., Ilichev A. V., Shurshalina M. A. Carbon dioxide uranium sources in the south of the Vitim area (Western Transbaikalia). Geology of Uranium Deposits : Digest. Moscow : VIMS, 1985. Vol. 95. pp. 131–137.
9. Kajitani K. A Geochemical Study on the Genesis of Ningyoite the Special Calcium Uranous Phosphate Mineral. Economic Geology. 1970. Vol. 65, Iss. 4. pp. 470–480.
10. Solodov I. N. ISR Mining of Uranium in the Permafrost Zone, Khiagda Mine (Russain Federation). International Symposium on Uranium Raw Material for the Nuclear Fuel Cycle: Exploration, Mining, Production, Supply and Demand, Economics and Environmental Issues (URAM-2014). Vienna : International Atomic Energy Agency, 2014. p. 36.
11. Doynikova O. A., Tarasov N. N., Kartashov P. M. Uranium mineralization of Vitim paleovalleys deposits. Razvedka i okhrana nedr. 2018. No. 12. pp. 24–30.
12. Rasskazov S. V., Lyamina N. A., Chernyaeva G. P. Cainozoic stratigraphy of the Vitim flatland. Longterm rifting phenomenon in the south of Eastern Siberia. Novosibirsk : Geo, 2007. 193 p.
13. Golubev V. N., Chernyshev I. V., Chugaev A. V., Eremina A. V., Baranova A. N. et al. U–Pb Systems and U Isotopic Composition of the Sandstone-Hosted Paleovalley Dybryn Uranium Deposit, Vitim Uranium District, Russia. Geology of Ore Deposits. 2013. Vol. 55, No. 6. pp. 399–410.
14. Golubev V., Chernyshev I., Kochkin B. et al. Uranium isotope variations (234U/238U and 238U/235U) and behavior of U-Pb isotope system in the Vershinnoye sandstone-type uranium deposit, Vitim uranium ore district, Russia. Journal of Earth Science. 2020. Vol. 31, No. 2. pp. 11–29.
15. Golubev V. N., Tarasov N. N., Chernyshev I. V., Chugaev A. V., Ochirova G. V. et al. Post-Ore Processes of Uranium Migration in the Sandstone-Hosted Type Deposits: 234U/238U, 238U/235U and U–Pb Systematics of Ores of the Namaru Deposit, Vitim District, Northern Transbaikalia. Geology of Ore Deposits. 2021. Vol. 63, No. 4. pp. 287–299.
16. Mashkovtsev G. A., Konstantinov A. K., Miguta A. K., Shumilin M. V., Shchetochkin V. N. Uranium Wealth of Russia. Moscow : VIMS, 2010. 850 p.
17. Velichko A. A. Development of modern landscape envelope of the Earth. Priroda. 2012. No. 1(1157). pp. 78–87.
18. Vaks A., Gutareva O. S., Breitenbach S. F. M., Avirmed E., Mason A. J. et al. Speleothems Reveal 500,000-Year History of Siberian Permafrost. Science. 2013. Vol. 340, Iss. 6129. pp. 183–186.
19. Reznikov A. A., Mulikovskaya E. P., Sokolov I. Yu. Natural water analysis methods. Moscow : Nedra, 1970. 488 p.
20. Solodov I. N., Velichkin V. I., Rubtsov M. G., Kuper V. Ya., Chertok M. B. Hydro-geochemical logging : Theory and practice. Moscow : URSS, 2005. 320 p.
21. Zaytsev Yu. V., Maksutov R. A., Chubanov O. V. et al. Theory and practice of gas-lift. Moscow : Nedra, 1987. 256 p.
22. Krajča J. Plyny v podzemních vodách. Praha, 1977. 423 p.
23. Fried J. J. Groundwater Pollution: Theory, Methodology, Modelling and Practical Rules. Developments in Water Science, 4. Amsterdam : Elsevier, 1975. 338 p.
24. Hiam-Galvez D., Gerber E., Perkrul J. In situ recovery (ISR) – the permitting challenge. ALTA 2020: Uranium Ore Processing. Perth : ALTA Metallurgical Services, 2020.
25. Pykhachev G. V., Isaev R. G. Underground hydraulics : tutorial. Moscow : Nedra, 1973. 360 p.
26. Solodov I. N., Avdokhin G. A. Gypsum mudding mechanism in pumping wells. Solid Mineral Mining Technologies : Proceedings of Russian Conference with Foreign Participation. Moscow : VIMS, 2016.
27. Seredkin M. Overview of In-Situ Recovery for non-uranium metals. Alta, 2019. 26 p.

Language of full-text русский
Полный текст статьи Получить
Назад