Журналы →  Chernye Metally →  2022 →  №4 →  Назад

Rolling and Heat Treatment
Название Experimental and computational study of the equivalent thermal conductivity coefficient when heating a strip coil
DOI 10.17580/chm.2022.04.06
Автор O. B. Kryuchkov, A. V. Krokhalev, P. I. Malenko, E. V. Sedov
Информация об авторе

Volgograd State Technical University, Volgograd, Russia:

O. B. Kryuchkov, Cand. Eng., Associate Professor, Deputy Dean, e-mail: bardb@mail.ru
A. V. Krokhalev, Dr. Eng., Associate Professor, Dean, e-mail: kroch@vstu.ru
E. V. Sedov, Cand. Eng., Associate Professor, Dept. of Materials Technology, e-mail: ehse@yandex.ru

 

Tula State University, Tula, Russia:

P. I. Malenko, Cand. Eng., Associate Professor, Dept. of Welding, Casting and Technology of Structural Materials, e-mail: malenko@tsu.tula.ru

Реферат

Heating of layered metal cages in bell furnaces, for example, stops from strip coils, due to the presence of gas gaps between the layers in them, leads to an increase in the temperature drop in the radial direction with a simultaneous temperature drop along the height of the charge. An accurate calculation of the heating time of the charges of strip coils requires knowledge of the temperature field in them, and, consequently, the radial equivalent coefficient of thermal conductivity and the end coefficient of thermal conductivity, on which the consumption of electricity, fuel and the performance of the furnace will depend. The formula and method for calculating the equivalent coefficient of thermal conductivity in the radial and end directions of ta strip coil are proposed, based on the numerical solution of the differential equation of thermal conductivity using an explicit difference scheme, a constant coefficient of thermal conductivity and boundary conditions of the first kind, suggesting the useof its experimental values as the tem perature of the roll surface at various points in time. The values of the thermal conductivity coefficients calculated according to the proposed formula and methodology were confirmed by experimental laboratory heating of a 0,3 mm thick steel strip coil made of electrical steel E3412; height, inner and outer diameters of the coil, respectively: 52,0; 51,882; 79,667 mm; with the number of tape layers per side equal to 46; with a filling coefficient of 0,86 and the degree of contact of layers – 2,9%. The strip coil was heated both together with the furnace to a temperature of 920 °C, and when it was loaded into a preheated furnace to a temperature of 620 °C, followed by heating to 920 °C and holding. When forming the charges, two heating options were carried out: radial and end heating.

Ключевые слова A stack of strip coils, experimental and laboratory heating, heat treatment, radial equivalent thermal conductivity coefficient, end thermal conductivity coefficient, MathConnex mathematical package (part of MathCadPro)
Библиографический список

1. Gusenkova N. P. Improvement of modes for heating bulk charges in thermal furnaces: Dissertation … of Candidate of Engineering Sciences. Ivanovo: IGU, 2000. 177 p.
2. Kryuchkov О. B. The use of physical modeling to determine the temperature field in the billet. Izvestiya vuzov. Chernaya metallurgiya. 2018. Vol. 61. No. 1. pp. 12–20.
3. Bakhvalov Yu. А., Grechikhin V. V., Grekova А. N. Determination of the equivalent thermal conductivity coefficient of a multi-turn solenoid winding based on the solution of the inverse problem of heat transfer. Izvestiya vuzov. Tekhnicheskie nauki. 2012. No. 1. pp. 81–84.
4. Kolibaba О. B., Bukhmirov V. V., Suleymanov М. G. Mathematical model for optimizing the operation of a thermal furnace for heating bulk charges. Vestnik Ivanovskogo gosudarstvennogo universiteta. 2014. No. 1. pp. 1–5.
5. Istomin А. А. Creation of software for modeling the operation of bell-type furnaces. Ab ovo … (From the very beginning …). 2015. No. 1. pp. 44–50.
6. Logunova О. S., Barankova I. I., Andreev S. М., Аgapitov Е. B., Chusavitina G. N. Mathematical models for studying the thermal state of bodies and controlling thermal processes. Elektrotekhnicheskie sistemy i kompleksy. 2019. No. 2. pp. 25–34.
7. Abisheva L. S. Study of complex heat transfer in a multilayer cylindrical structure by a graphanalytical method. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki. 2016. No. 4. pp. 99–107.
8. Kudinov I. V., Abisheva L. S., Branfileva А. N. Study of complex heat transfer in a multilayer cylindrical structure, including energy-saving gas layers. Vestnik Samarskogo gosudarstvennogo arkhitekturno-stroitelnogo universiteta. Gradostroitelstvo i arkhitektura. 2014. No. 3. pp. 90–95.
9. Krivosheev V. Е. Equivalent thermal conductivity coefficient of the roll when heating from the side of the surface generatrix. Mezhdunarodny zhurnal perspektivnykh issledovaniy v oblasti vychislitelnoy tekhniki. 2018. No. 2. pp. 27–31.
10. Krivosheev V. Е. Boundary conditions of the mathematical problem of heating an aluminum strip from the ends of a roll for heat treatment. Avtomatizatsiya i upravlenie v tekhnicheskikh sistemakh. 2019. No. 1. pp. 7–10.
11. Taylor S. W., Wang S. Modelling steel strip heating within an annealing furnace. Pacific Journal of Mathematics for Industry. 2017. Vol. 9. No. 5. P. 1–15.
12. Yang P., Wen Z., Dou R. Heating process simulation of steel coil in bell-type annealing furnace. Heat transfer - Asian research. 2016. Vol. 45. No. 8. pp. 714–729.
13. Chun-li Mo., Qiang Li., Xu-ming Gu., Wang H. Numerical simulation the temperature field of the multi-coil batch during annealing process in bell-type furnace. Advanced Materials Research. 2012. Vol. 538–541. pp. 637–641.
14. Shtekhno O. N., Yatsenko V. A., Fogel' B. M., Dobrovol'skii S. E., Bratus' S. A. Improving the efficiency of bell-type furnaces and the quality of annealed rolled products. Metallurgist. 2002. Vol. 46. No. 1–2. pp. 49–51.
15. Suleymanov М. G., Bukhmirov V. V. Study of the effect of porosity and container type on the temperature field of heated charges. Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta. 2017. No. 5. pp. 5–9.
16. Perevezentsev G. А., Gorbunov V. А., Kolibaba О. B., Potekhin А. Е. Experimental study of the effect of filtration on the temperature field of a bulk charge. Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta. 2015. No. 5. pp. 1–5.
17. Kusov V. I., Bashkatov S. A., Kusova N. P., Mikhalev P. M., Baranov V. I. Convector ring for heating charge in hood furnaces. Patent USSR. No. 1133307. Applied: 18.08.1983. Published: 07.01.1985. Bulleten No. 1.
18. Kryuchkov О. B., Krokhalev А. V., Malenko P. I., Saranin L. G. MathConnex mathematical package for calculating the equivalent thermal conductivity of a strip coil. Chernye Metally. 2021. No. 2. pp. 45–51. DOI: 10.1780/chm.2021.02.08
19. GOST 7164–78. SSI self-balancing servointstruments. General specifications. Introduced: 26.12.1978. Moscow: Gosudarstvenny komitet SSSR, 1978.
20. Svenchanskiy А. D. Electrical industrial furnaces. In 2 parts. Part 1. Electric resistance furnaces. Moscow: Energiya, 1975. 384 p.
21. Borisenko А. I., Danko V. G., Yakovlev А. I. Aerodynamics and heat transfer in electrical machines. Moscow: Energiya, 1974. 558 p.
22. Calculation of heating and thermal furnaces: reference book. Edited by V. М. Tymchak and V. L. Gusovskiy. Moscow: Metallurgiya, 1983. 480 p.

Language of full-text русский
Полный текст статьи Получить
Назад