Journals →  Tsvetnye Metally →  2022 →  #3 →  Back

ArticleName Thermodynamic Modelling of Ion Equilibria in the Na2O – Al2O3 – H2O System with Gibbsite
DOI 10.17580/tsm.2022.03.08
ArticleAuthor Brichkin V. N., Fedorov A. T.

Saint Petersburg Mining University, Saint Petersburg, Russia:

V. N. Brichkin, Head of Metallurgy Department, Doctor of Technical Sciences, e-mail: Brichkin_VN@
A. T. Fedorov, Postgraduate Student at the Metallurgy Department, e-mail:


The structure and ionic composition of aluminate solutions are the key problems in the theory of alkali-based alumina production. Good understanding of these problems determine how adequately the processes will be evaluated that take place at different stages of aluminium material processing and if modern digital twins of processing plants can be enhanced with flexible thermodynamic and kinetic models. Most researchers recognize two forms of complex alumi nium anions for the process critical region of the Na2O – Al2O3– H2O and K2O – Al2O3 – H2O systems. They exist in the form of hydrated monomers and dimers of meta-aluminate ion. Based on the analysis of phase equilibria in the Na2O – Al2O3 – H2O system, it was established that the degree of nonlinearity of solubility isotherms can serve as an indicator of a more complex composition of aluminate solutions with dimers of tetrahydroxo complexes of meta-aluminate ions, and helps calculate the ionic composition for an isothermal model with two ionic forms of aluminium. It is shown that, with the participation of dimers, the region of the corresponding equilibria can be determined by building solubility isotherms in the form of the following function: [Al2O3] = f ([Na2O] – [Al2O3]). It helps narrow the range of model representation of coexistence between monomers, dimers and dehydrated meta-aluminate ions in the system Na2O – Al2O3 – H2O. The modelling results show that, with the participation of dimers of tetrahydroxo complexes of meta-aluminate ions, the region of phase equilibria tends to expand significantly as the temperature rises and, with the participation of dimers, the equilibrium maximum tends to shift into the region of low-alkaline solutions. Thus, the equilibrium isotherms in the Na2O – Al2O3 – H2O system at the temperatures of 30, 60, and 95oC include phase equilibria involving one, two or three ionic forms of aluminium, the fraction and the region of which are determined by the concentration of alkaline component and the temperature.
This research was funded by the Russian Science Foundation under Agreement No. 18-19-00577-П dated April 28, 2021 on the Provision of a Grant for Conducting Fundamental and Exploratory Research Studies.

keywords Alumina production, aluminate solution, phase equilibria, isothermal modelling, ionic composition

1. Kuznetsov S. I., Derevyankin V. A. Physical chemistry behind the Bayer alumina production process. Moscow : Metallurgizdat, 1964. 353 p.
2. Agranovskiy A. A., Berkh V. I., Kavina V. A. et al. Metallurgist’s handbook on non-ferrous metals. Alumina production. Moscow : Metallurgiya, 1970. 320 p.
3. Layner A. I., Eremin N. I., Layner Yu. A., Pevzner I. Z. Alumina production. Moscow : Metallurgiya, 1978. 344 p.
4. Abramov V. Ya., Nikolaev I. V., Stelmakova G. D. Processing of aluminium materials: Physico-chemical basics. Moscow : Metallurgiya, 1985. 288 p.
5. Sizyakov V. M., Korneev V. I., Andreev V. V. Improved quality of alumina and by-products in the comprehensive processing of nephelines. Moscow : Metallurgiya, 1986. 118 p.
6. LeRoy D., Esther L. Alumina chemicals: science and technology handbook. New York : Wiley, 1990. 671 p.
7. Alumina 3 Bayer Species Model. Available at: (Accessed: May 30, 2019).
8. Golubev V. O., Balde M.-B., Chistyakov D. G. Development and utilization of detailed process and technology models at RUSAL alumina refineries. The 35th International ICSOBA Conference : proceedings. Hamburg, 2017. pp. 281–288.
9. Golubev V. O., Chistiakov D. G., Brichkin V. N., Litvinova T. E. Systems and aids mathematical modeling of the alumina refinery methods: problems and solutions. Non-ferrous Metals. 2019. No. 1. pp. 40–47. DOI: 10.17580/nfm.2019.01.07.
10. Sizyakov V. M., Litvinova T. E., Brichkin V. N., Fedorov A. T. A modern physico-chemical description of equilibria in the Na2O – Al2O3 – H2O system and similar systems. Zapiski Gornogo instituta. 2019. Vol. 237. pp. 298–306.
11. Beloglazov I. I., Petrov P. A., Bazhin V. Yu. The concept of digital twins for tech operator training simulator design for mining and processing industry. Eurasian Mining. 2020. No. 2. pp. 50–54. DOI: 10.17580/em.2020.02.12.
12. Golubev V. O., Litvinova T. E. Dynamic modelling of the industrial gibbsite crystallization cycle. Zapiski Gornogo instituta. 2021. Vol. 247. pp. 88–101.
13. Layner Yu. A., Kiselev A. N., Dobra J., Alistarkh V. V. Comprehensive processing of aluminium-containing waste: Scientific and technological basics. Non-Ferrous Metals – 2011. Proceedings of the 3rd International Congress. Krasnoyarsk : OOO “Verso”, 2011. pp. 116–122.
14. Sizyakov V. M. Sintering of alkaline aluminosilicates and hydrochemical processing of cakes: Process features. Zapiski Gornogo instituta. 2016. Vol. 217. pp. 102–112.
15. Alekseev A. I. Comprehensive processing of apatite-nepheline ores by designing closed-loop processing circuits. Zapiski Gornogo instituta. 2015. Vol. 215. pp. 75–83.
16. Trushko V. L., Utkov V. A., Bazhin V. Yu. Relevance of and processability of red muds generated by alumina industry. Zapiski Gornogo instituta. 2017. Vol. 227. pp. 547–553.
17. Dubovikov O. A., Yaskelyaynen E. E. Use of Thermochemistry-Bayer method to process low-grade bauxite ores. Zapiski Gornogo instituta. 2016. Vol. 221. pp. 668–674.
18. Research papers on the nature of aluminate solutions. Association of Non-Ferrous Metallurgy Science and Technology. Leningrad, 1959. 82 p.
19. Mironov V. E., Pavlov L. N., Eremin N. I., Konenkova T. Ya. On the structure of aluminate ions. Tsvetnye Metally. 1969. No. 7. pp. 56, 57.

20. Romanov L. G. Decomposition of aluminate solutions. Alma-Ata : “Nauka” Kazakhskoy SSR, 1981. 205 p.
21. Puchkov L. V., Chakhalyan O. Kh. Aluminate ion models and equilibrium constants for Al(OH)3 involving reactions. Zhurnal prikladnoy khimii. 1978. Vol. 51, No. 5. pp. 1010–1015.
22. Rayzman V. L., Ni L. P., Vlasenko Yu. K., Pevzner V. I. Understanding the stability limits of aluminate ions in the Na2O–Al2O3–H2O system. Kompleksnoe ispolzovanie mineralnogo syrya. 1986. No. 3. pp. 61–65.
23. Myund L. A., Sizyakov V. M., Burkov K. A., Zakharzhevskaya V. O. et al. Aluminate solutions at various temperatures. Zhurnal prikladnoy khimii. 1995. Vol. 68, No. 12. pp. 1964–1968.
24. Sizyakov V. M., Myund L. A., Zakharzhevskaya V. O., Popov I. A. et al. Examining the state of aluminium and zinc ions in alkaline solutions. Zhurnal prikladnoy khimii. 1992. Vol. 65, No. 1. pp. 23–28.
25. Gerson A. R., Ralston J., Smart R. An investigation of the mechanism of gibbsite nucleation using molecular modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1996. Vol. 110. pp. 105–109.
26. Johnston C., Agnev S., Shoonover J., Kenney J. W. et al. Raman study of aluminum speciation in simulated alkaline nuclear waste. Environmental Science and Technology. 2002. Vol. 36, Iss. 11. pp. 2451–2458.
27. Sipos P. The structure of Al(III) in strongly alkaline aluminate solutions — A review. Journal of Molecular Liquids. 2009. Vol. 146. pp. 1–14.
28. Arlyuk B. I., Veprikova T. B. Solubility of hydrargillite as a function of the concentration of soda alkaline solution and the temperature. Tsvetnye Metally. 1981. No. 6. pp. 59–60.
29. Rosenberg S. P., Healy S. J. A thermodynamic model for gibbsite solubility in Bayer liquors. 4-th International Alumina Quality Workshop. Darwin, 1996. pp. 301–310.
30. Li X., Lu W., Feng G., Liu G. et al. The applicability of Debye-Huckel model in NaAl(OH)4 – NaOH – H2O system. The Chinese Journal of Process Engineering. 2005. Vol. 5, Iss. 5. pp. 525–528.
31. Bennett F. R., Crew P., Muller K. K. A GMDH approach to modelling gibbsite solubility in Bayer process liquors. International Journal of Molecular Science. 2004. Vol. 5. pp. 101–109.
32. Königsberger E., Eriksson G., May P. M., Hefter G. Comprehensive model of synthetic Bayer liquors. Part 1. Overview. Industrial & Engineering Chemistry Research. 2005. Vol. 44. pp. 5805–5814.
33. Königsberger E., Bevis S., Hefter G., May P. M. Comprehensive model of synthetic Bayer liquors. Part 2. Densities of alkaline aluminate solutions to 90 oC. Journal of Chemical Engineering Data. 2005. Vol. 50. pp. 1270–1276.
34. Königsberger E., May P. M., Hefter G. Comprehensive model of synthetic Bayer liquors. Part 3. Sodium aluminate solutions and the solubility of gibbsite and boehmite. Monatshefte fur Chemie. 2006. Vol. 137. pp. 1139–1149.
35. Li X.-B., Yan L., Zhou Q.-S., Liu G.-H. et al. Thermodynamic model for equilibrium solubility of gibbsite in concentrated NaOH solutions. Transactions of Nonferrous Metals Society China. 2012. Vоl. 22. pp. 447–455.
36. Zelikman A. I., Voldman G. M., Belyaevskaya L. V. Theory of hydrometallurgical processes. Moscow : Metallurgiya, 1983. 424 p.

Full content Thermodynamic Modelling of Ion Equilibria in the Na2O – Al2O3 – H2O System with Gibbsite