Journals →  Chernye Metally →  2022 →  #2 →  Back

Ecology and Recycling
ArticleName Technogenic resources of ferrous metallurgy and their complex processing in the conditions of JSC Uzmetkombinat
DOI 10.17580/chm.2022.02.12
ArticleAuthor S. R. Khudoyarov, M. M. Yakubov, R. Kh. Pirmatov, Kh. R. Valiev

Almalyk branch of NUST MISIS, Almalyk, Uzbekistan:

S. R. Khudoyarov, Cand. Eng., Associate Professor, Deputy Director for Educational Work, e-mail:

Kh. R. Valiev, Cand. Eng., Associate Professor, Dept. of Metallurgy

Almalyk branch of the Tashkent State Technical University, Almalyk, Uzbekistan.
M. M. Yakubov, Dr. Eng., Professor, Dept. of Metallurgy


JSC Uzmetkombinat, Bekabad, Uzbekistan:
R. Kh. Pirmatov, General Director


The article deals with the involvement of accumulated and formed technogenic formations in the form of steel-making slag and dust-like waste from ferrosilicon production into processing, in order to obtain additional valuable components from industrial waste. To isolate them, various methods of hydraulic classifi cation, jigging, enrichment have been investigated, and gravitational enrichment on a concentration table is recognized as the most optimal. The possibilities of using technogenic waste of aspiration dust from the production of ferroalloys – microsilica containing at least 85% amorphous silica in its composition – can be used for the production of sodium silicate binder (liquid glass) by the autoclave method. The resulting material can be used as an import-substituting raw material in the production technology of manual arc welding electrodes.

keywords Slag, dust, oxide, extraction, gravity concentration, micro silica, water glass, autoclave-free method.

1. Yusupkhodzhaev А. А. Theory of non-waste technologies in ferrous metallurgy. Tashkent: TashGTU, 2017. 147 p.
2. Yakubov N. М. Prospects for the global steel market. Marketing v Rossii i za rubezhom. 2014. No. 6. pp. 123–130.
3. World steel production in 2020. Available at: (accessed: 06.02.2022).
4. Trubetskoy К. N. Scientific substantiation of the ecological doctrine of Russia. Gornyi Zhurnal. 2005. No. 4. pp. 5–8.
5. Ksenofontov B. S., Pavlikhin G. P., Simakova Е. N. Industrial ecology. Moscow: Infa-M, 2013. 207 p.
6. Yusfin Yu. S. Industry and environment. Moscow: IKTs Akademkniga, 2002. 469 p.
7. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Official Journal of the European Union, L 334/17. 2010. p. 17–119. EUR-Lex. Available at: CELEX%3A32010L0075 (accessed: 06.02.2022).
8. Ecological security strategy of the Russian Federation for the period up to 2025: approved by the Decree of the President of the Russian Federation No. 176. items 26, 27 dated 19.04.2017.
GARANT: offi cial Internet-portal. Available at: (accessed: 06.02.2022).
9. Speech by the President of the Republic of Uzbekistan Sh. M. Mirziyoyev on the importance and urgent need for processing man-made waste. Available at: (accessed: 06.02.2022).
10. Melnikov N. N., Busyrev V. М., Churkin О. Е. Estimation of the cost of reserves and the efficiency of the use of technogenic deposits. Gornyi informatsionno-analiticheskiy byulleten. 2018. No. 8. pp. 200–207.
11. Yusupkhodzhaev А. А., Khudoyarov S. R., Valiev Kh. R., Matkarimov S. Т. Efficiency rise of steel making production via additional recovery of valuable components from utilized slags. Chernye Metally. 2015. No. 1. pp. 19–22.
12. Barkhatov V. I., Dobrovolskiy I. P., Kapkaev Yu. Sh. Wastes of production and consumption – a reserve of building materials: monograph. Chelyabinsk: Izdatelstvo Chelyabinskogo gosudarstvennogo universiteta. 2017. 477 p.
13. Lvova S. A., Korda E. V., Petrunin R. V., Rusina V. V. Method to produce liquid glass. Patent RF. No. 2430018. Applied: 23.11.2019. Published: 27.09.2011.
14. Egorova К. G., Skvortsov А. V., Chekmarev А. S. Obtaining a sodium silicate solution from diatomite of the Inza deposit. Vestnik tekhnologicheskogo universiteta (Kazanskiy natsionalny tekhnologicheskiy universitet). 2016. Vol. 19. No. 13. pp. 51–55.
15. Mohamed M., Mkhalida I. A., Barakatbd M. A. Rice husk ash as a renewable source for the production of zeolite NaY and its characterization. Arabian Journal of Chemistry. 2015. Vol. 8. No. 1. pp. 48–53.
16. Kholomeydik А. N. Obtaining, composition and properties of silicon and carbon-containing products of processing of fruit shells of rice. Dissertation of … Candidate of Chemical Sciences. Vladivostok: Institut khimii DVO RAN, 2016. pp. 24–28.
17. Geetha D. Preparation and characterization of silica material from rice husk ash – an economically viable method. Chemistry and Materials Research. 2016. Vol. 8, No. 6. pp. 1–5.
18. Suraporniboon P., Julsrigival S., Senthong C., Karladee D. Genetics of silicon content in upland rice under drought condition. SABRAO Journal of Breeding and Genetics. 2008. Vol. 40. No. 1. pp. 27–35.
19. Shcherbakova Т. P., Vaseneva I. N. Method for obtaining biogenic silica. Teoreticheskie osnovy khimicheskoy tekhnologii. 2019. Vol. 54. No. 2. pp. 185–191.
20. Tho А. Kh., Zakharov А. I. Obtaining an inorganic binder for cold hardening mixtures. Novye ogneupory. 2018. No. 6. pp. 41–45.
21. Khudoyarov S. R., Yakubov М. М., Valiev Kh. R., Kholikulov D. B., Ekubov О. М., Mukhametdzhanova Sh. А. Development of a circuit diagram of apparatuses in the technology of liquid glass production at JSC Uzmetkombinat. Kompozitsionnye materialy. 2021. No. 2. pp. 123–127.

Language of full-text russian
Full content Buy