Journals →  Tsvetnye Metally →  2022 →  #1 →  Back

ArticleName Study of technological properties of new aluminum-calcium alloys for pistons of internal combustion engines
DOI 10.17580/tsm.2022.01.08
ArticleAuthor Doroshenko V. V., Naumova E. A., Barykin M. A., Koshmin A. N.

NUST MISIS, Chair for Metal Forming, Moscow, Russia:

V. V. Doroshenko, Engineer, Junior Researcher, Laboratory of Hydrocarbon Catalysis and Processing, Candidate of Technical Sciences, e-mail:
E. A. Naumova, Associate Professor, Candidate of Technical Sciences, e-email:
M. A. Barykin, Engineer, e-mail:
A. N. Koshmin, Engineer of the 1st Category, e-mail:


The results of studies of the casting properties of aluminum-calcium alloys in comparison with known silumins are presented. The alloys were prepared in a resistance electric furnace based on pure components and ligatures. The pouring was carried out at temperatures of 700 and 780 oC for silumins and aluminum-calcium alloys, respectively, obtaining flat ingots for subsequent remelting and casting of samples. All samples were poured with the same superheat above the liquidus temperature of 100 oC. It is shown that alloys with calcium (both eutectic and hypereutectic) are not inferior to widely used silumins in terms of fluidity, hot brittleness, and form fillability. For the first time, the parameters of difficult shrinkage were determined in a T-shaped sample of aluminum-calcium alloys in comparison with silumins. It is shown that eutectic alloys have comparable values of linear shrinkage with eutectic silumins, and the shrinkage of the hypereutectic alloy Al – 6% Ca – 3% Mn exceeds the shrinkage of the hypereutectic silumin AK18 by 1.5 times (1.5 and 1%, respectively). A high deformation plasticity during hot and cold rolling of the Al6Ca3Mn hypereutectic alloy has been established. The overall reduction ratio after applying both rolling methods exceeded 95%. The primary crystals retained their compact size and shape. It has been established that the strength properties of cold-rolled sheets from the Al6Ca3Mn hypereutectic alloy correspond to the strength values of the AD31 industrial aluminum alloy, which allows to consider it promising in those industries where a combination of high manufacturability with reduced thermal and electrical conductivity is required.

keywords Aluminum, calcium, silumins, eutectic, casting, hot brittleness, fluidity, linear shrinkage, deformation

1. Myagkov L. L., Sivachev S. М., Gusev М. P. Experimental determination of coefficients in plasticity and creep models of a piston alloy. Dvigadetlestroenie. 2020. No. 1. pp. 10–15.
2. Ro..hrle M. D. Pistons for Internal Combustion Engines. Verlag Moderne Industrie, 1995.
3. Official website of the Association of Producers, Suppliers and Consumers of Aluminum. Available at: (accessed: 29.12.2021).
4. Graf A. Aluminum alloys for lightweight automotive structures. Materials, Design and Manufacturing for Lightweight Vehicles (2nd ed.). 2021. pp. 97–123.
5. Zolotarevskiy V. S., Belov N. А. Metal science of cast aluminum alloys. Moscow : MISiS, 2005. 374 p.
6. Belov N. А., Belov V. D., Savchenko S. V., Samoshina М. Е., Chernov V. А. et al. Piston silumins. Edited by N. A. Belov. Moscow : Ruda i Metally, 2011. 248 p.
7. Jorstad J., Apelian D. Hypereutectic Al – Si Alloys: Practical Casting Considerations. Inter Metalcast. 2009. Vol. 3. pp. 13–36.
8. Zhang H.-H., Duan H., Shao G., Xu L. Microstructure and mechanical properties of hypereutectic Al – Si alloy modified with Cu – P. Rare Metals. 2008. Vol. 27, Iss. 1. pp. 59–63.
9. Shamsuzzoha M., Juretzko F. R., Haque A. Development of high-strength hypereutectic Al-Si alloys by nanorefining the contituent Si-phases. Aluminum Alloys: Fabrication, Characlterization and Application (TMS, The Minerals, Metals & Materials Society). 2008. pp. 207–211.
10. Nemenenok B. М. Theory and practice of complex modification of silumins. Minsk : Tekhnoprint, 1999. 272 p.
11. Shamsuzzoha M., Nasrac L., Berry J. Nano-Refinement of Eutectic and Primary Silicon Fibers in Al – Si Alloys for High Strength Structural Applications. AFS Transactions. 2012. pp. 179–186.
12. Volochko А. Т., Komarov А. I., Komarova V. I., Izobello А. Yu. Modifying effect of submicron silicon dioxide structured with boron and titanium nanoparticles on the formation of the microstructure and properties of a piston alloy. Vestsi NAN Belarusi. Seriya: Fiz.-tekhn. navuk. 2010. No. 2. pp. 11–19.
13. Prudnikov А. N. Production technology, structure and properties of engine pistons from hypereutectic deformable silumin. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya. 2009. No. 5. pp. 45–47.
14. Eskin G. I., Pimenov Yu. P. Obtaining deformed semi-finished products from hypereutectic silumins. Tekhnologiya legkikh splavov. 1996. No. 2. pp. 51–55.
15. Prudnikov А. N. Piston deformable hypereutectic silumins. Tekhnologiya metallov. 2014. No. 2. pp. 8–11.
16. Prudnikov А. N. Effect of deformation on the structure and properties of silumin. Vestnik Sibirskogo gosudarstvennogo industrialnogo universiteta. 2017. No. 3. pp. 11–17.
17. Belov N. A., Naumova Е. А., Akopyan Т. К. Aluminum based eutectic alloys: new alloying systems. Moscow : Ruda i Metally, 2016. 256 p.
18. Naumova E. A. Use of Calcium in Alloys: From Modifying to Alloying. Russian Journal of Non-Ferrous Metals. 2018. Vol. 59. No. 3. pp. 284–298.
19. Kevorkov D., Schmid-Fetzer R. The Al – Ca system. Pt. 1: Experimental investigation of phase equilibria and crystal structures. Z. Metallkd. 2001. Bd. 92(8). S. 946–952.
20. Belov N. A., Naumova Е. А., Ilyukhin V. D., Doroshenko V. V. Structure and mechanical properties of Al – 6 % Ca – 1 % Fe alloy foundry goods, obtained by die casting. Tsvetnye Metally. 2017. No. 3. pp. 69–75. DOI: 10.17580/tsm.2017.03.11.
21. Mondolfo L. F. Aluminum alloys: structure and properties. Translated from English. Moscow : Metallurgiya, 1979. 640 p.
22. Belov N. A., Doroshenko V. V., Batyshev K. A. Microstructure and phase composition of the eutectic Al – Ca alloy, additionally alloyed with small additives of zirconium, scandium and manganese. Non-ferrous Metals. 2017. No. 2. pp. 49–54. DOI: 10.17580/nfm.2017.02.09.
23. Belov N. A., Naumova E. A., Doroshenko V. V., Bazlova E. A. Effect of scandium on the phase composition and hardening of casting aluminum alloys of the Al – Ca – Si system. Russian Journal of Non-Ferrous Metals. 2016. Vol. 57. pp. 695–702.
24. Naumova E., Doroshenko V., Barykin M., Sviridova T., Lyasnikova A. et al. Hypereutectic Al – Ca – Mn – (Mi) alloys as natural eutectic composites. Metals. 2021. Vol. 11. p. 890.
25. Naumova E. A., Petrov М. А., Stepanov B. А., Vasilieva Е. S. Stamping with torsion of the Al – Ca alloy workpiece with high concentration of Al4Ca. Tsvetnye Metally. 2019. No. 1. pp. 66–71. DOI: 10.17580/tsm.2019.01.10.
26. Naumova E. A., Rogachev S. O., Sundeev R. V. Effect of severe plastic deformations on structure features and mechanical behavior of Al4Ca intermetallic in Al – 18 % Ca alloy. Journal of Alloys and Compounds. 2021. Vol. 854.
p. 157117.
27. GOST 11069–2001. Primary aluminium. Grades. Introduced: 01.01.2003.
28. GOST 2169–69. Technical silicon. Specifications. Introduced: 01.07.1970.
29. GOST R 53777–2010. Master alloys of aluminium. Specifications. Introduced: 01.07.2010.
30. Official website of Thermo-Calc Software. Database for calculating phase diagrams. Available at: (accessed: 29.12.2021).
31. Zolotarevskiy V. S., Pozdnyakov А. V., Kanakidi Ya. Yu. On the connection between the total and effective crystallization intervals and the hot brittleness of multicomponent aluminum-based alloys. Izvestiya vysshikh uchebnykh zavedeniy. Tsvetnaya metallurgiya. 2012. No. 5. pp. 57–62.
32. Pikunov М. V. Melting of metals. Crystallization of alloys. Solidification of castings : textbook for universities. Moscow : MISiS, 1997. 376 p.

Language of full-text russian
Full content Buy