Journals →  Tsvetnye Metally →  2021 →  #10 →  Back

ArticleName The changing dynamics of the gas-dust flow in the flash smelter at Nadezhda metallurgical plant due to addition of a shield. Part 1. Model calculations
DOI 10.17580/tsm.2021.10.09
ArticleAuthor Krupnov L. V., Pakhomov R. A., Starykh R. V., Talalov V. A.

Norilsk Nickel, Norilsk, Russia:

L. V. Krupnov, Deputy Head of the Technical Office – Chief Metallurgist1, Candidate of Technical Sciences, e-mail:

Gipronikel Institute LLC, Saint Petersburg, Russia:
R. A. Pakhomov, Senior Researcher at the Pyrometallurgy Laboratory of the R&D Department2, Candidate of Technical Sciences, e-mail:

Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia:
R. V. Starykh, Associate Professor, Candidate of Technical Sciences, e-mail:
V. A. Talalov, Associate Professor, Candidate of Technical Sciences, e-mail:


A poorer quality of the raw materials that go in the flash smelter operated by Nadezhda Metallurgical Plant, as well as the use of man-made deposits and fine ore concentrates with high concentrations of particles smaller than 10 μm, leads to a higher amount of entrained dust. Dust entrained by the gas flow leads to the formation of accretion in the slag end, uptake shaft and waste heat boiler. A higher dust entrainment is associated with higher loads on the gas duct, higher material turnover, decreased performance and recovery of non-ferrous metals. Fitting the furnace crown with a shield avoiding any major changes to the furnace design or the smelting process helps change the dynamics of the gas flow and lower dust entrainment. This paper defines the optimum location and dimensions of such shield. Depending on the particle size and the density of the gas-dust flow, with the shield installed, the estimated reduction in the amount of dust getting in the dust treatment system may reach 20%. 

keywords Flash smelter, autogenous process, dust entrainment, bay, gas-dust flow, shield

1. Talalov V. A., Krupnov L. V., Rumyantsev D. V., Starykh R. V., Petrov A. F. Research of gas flow movement in flash smelting furnace of Nadezhda metallurgical plant by mathematical modeling methods. Tsvetnye Metally. 2015. No. 5. pp. 86–90. DOI: 10.17580/tsm.2015.05.17.
2. Krupnov L. V., Starykh R. V., Petrov A. F. Forming mechanism of refractory accretion in the falsh smelters of “Nadezhda” Metallurgical Plant. Tsvetnye Metally. 2013. No. 2. pp. 46–51.
3. Krupnov L. V. Formation of refractory accretion in flash smelters and ways to eliminate it: Extended abstract of dissertation … of Candidate of Technical Sciences. Saint Petersburg, 2015. 21 p.
4. Eroshevich S. Yu., Fomichev V. B., Boyko I. V., Krupnov L. V., Anapolskaya S. G. Analysis of changing of a sulfide crude ore structure, which was processed during the flash smelting, and technological properties of operation under the conditions of reducing its caloricity. Tsvetnye Metally. 2012. No. 9. pp. 13–20.
5. Anapolskaya S. G., Petrov A. F., Fomichev V. B., Krupnov L. V., Tyuleneva D. I. Processing of sulphide ore with decreasing calorific power in a flash smelter. Proceedings of the 6th International Congress Non-Ferrous Metals and Minerals – 2014. Krasnoyarsk, 2014. p. 234.
6. Anapolskaya S. G., Marchuk R. A., Petrov A. F., Yuriev A. I. Operation of the flash smelters at the Polar Division of Norilsk Nickel when processing low-energy raw materials. Non-Ferrous Metals and Minerals 2017: Proceedings of the 9th International Congress. Krasnoyarsk : Sibirskiy federalnyi universitet, 2017. pp. 1150–1160.
7. Johto H., Latostenmaa P., Peuraniemi E., Osara K. Review of Boliden Harjavalta Nickel Smelt. Conference ALTA 2019. pp. 81–87.
8. Vieira L., Marques M., Leite F. Flash furnace thermal control at Paranapanema. Proceeding of the 15th International Flash Smelting Congress. Helsinki, 2017.
9. Yasuda Yu., Chida H., Motomura T. Flash Smelting Furnace Renewal and Productivity Improvement in the Saganoseki Smelter and Refinery. Journal of MMIJ. 2020. Vol. 136, Iss. 8. pp. 88–98.
10. Sanchez A., Ramos M., Garcia J. Improvements carried out in the FSF uptake shaft and waste-heat boiler – a review over Atlantic Copper’s history. Proceeding of the 15th International Flash Smelting Congress. Helsinki, 2017.
11. Jian-Ping H., Zheng-Bin W., Jin-Jun F. The overview of progress at Jinlong smelter in recent years. Proceeding of the 15th International Flash Smelting Congress. Helsinki, 2017.
12. Keytshokayl D. S. Control of accretion formation in the uptake shaft at the BCL smelter. Proceeding of the 13th International Flash Smelting Congress. Botswana, 2011. pp. 1–26.
13. Starykh R. V., Morgoslep V. I., Krupnov L. V., Tozik V. M., Pakhomov R. A. Method of processing fine-dispersed raw material in a flash smelting furnace. Patent RF, No. 2740741. Applied: 29.05.2020. Published: 20.01.2021. Bulletin No. 2.
14. Sedov L. I. Similarity and Dimensional Methods in Mechanics. Moscow : Nauka, 1987. 430 p.
15. Volkov K. N., Emelianov V. N. Gas-particle flows. Moscow : Fizmatlit, 2008. 598 p.
16. Wilcox D. C. Turbulence Modeling for CFD2006: D C W Industries.
17. Hirsch C. Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics. Second Edition Butterworth-Heinemann, 2007.
18. Loytsyanskiy L. G. Mechanics of liquids and gases. Moscow : Drofa, 2003. 670 p.
19. Altshul A. D., Kiselev N. P. Hydraulics and aerodynamics. Moscow : Stroyizdat, 1975. 323 p.
20. Snegirev A. Yu. High-performance computations in applied physics. Numerical modelling of turbulent flows: Learner’s guide. St Petersburg : Izdatelstvo SPbGPU, 2008. 143 p.
21. Belov I. A., Isaev S. A. Modelling of turbulent flows: Learner’s guide. St Petersburg : Izdatelstvo BGTU, 2001. 108 p.
22. ANSYS 01FLUENT 15.0. User’s Guide. ANSYS Inc., 2013.
23. Shabliy L. S., Krivtsov A. V., Kolmakova D. A. Computer modelling of standard hydraulic and gas-dynamic processes of engines and power plants in ANSYS Fluent: Learner’s guide. Samara : Izdatelstvo Samarskogo universiteta, 2017. 108 p.

Language of full-text russian
Full content Buy