Journals →  Tsvetnye Metally →  2021 →  #10 →  Back

ArticleName Extraction of carbon sorbents from aqueous solutions
DOI 10.17580/tsm.2021.10.04
ArticleAuthor Gaydukova A. M., Kolesnikov V. A., Napreeva A. D., Kondratieva E. S.

D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia:

A. M. Gaydukova, Associate Professor at the Department of Technology of Inorganic Substances and Electrochemical Processes, Candidate of Technical Sciences, e-mail:
V. A. Kolesnikov, Head of the Department of Technology of Inorganic Substances and Electrochemical Processes, Professor, Doctor of Technical Sciences, e-mail:
A. D. Napreeva, Master’s Student at the Department of Technology of Inorganic Substances and Electrochemical Processes, e-mail:
E. S. Kondratieva, Deputy Head of the Professional Training and Certification Department, Candidate of Chemical Sciences, e-mail:


Ways to enhance effectiveness of carbon sorbents extraction from aqueous solutions of sodium chloride and sulfate salts by the electroflotation method after sorption in static mode are identified. It was found that the low degree of extraction of carbon materials from the sulfate- ion containing solutions is associated with the specific sulfate- ion adsorption on the surface of the coals, leading to a significant reduction in the electrokinetic potential of the particles to –30 mV. Sorbed on the surface of coal particles, Fe3+ cations shift their electrokinetic potential to the positive field, which contributes to the intensification of electroflotation extraction of carbon material from acidic solutions (pH 4–5). To increase the degree of extraction of powdered and granular coals, organic additives (surfactants, flocculants) are selected, which allow not only to intensify the process, but also to increase the amount of extracted powdered coals to 1 g/l, granular – to 0.6 g/l. Experiments aims to assess the effectiveness of the electroflotation method in the extraction of carbon materials of various types have shown that the use of this method should result not only to reduce the duration of the process from several hours to 10–20 minutes, but also increase the degree of coal recovery from 65–70 to 96–99% (according on the type of coal and conditions) in comparison with sedimentation in the presence of a coagulant.
This research was funded by D.Mendeleev University of Chemical Technology of Russia. Project No.: З-2020-003.

keywords Sorption, carbon sorbent, electroflotation, heavy metals, surfactants, flocculant

1. Fogel A. A., Somin V. A., Komarova L. F. Understanding the sorption materials made of wood and minerals industry waste. Khimiya v interesakh ustoychivogo razvitiya. 2011. Vol. 19, No. 4. pp. 461–465.
2. Fazylova G. F., Valinurova E. R., Khatmullina R. M., Kudasheva F. Kh. Sorption parameters of phenol derivatives on various carbon materials. Sorbtsionnye i khromatograficheskie protsessy. 2013. Vol. 13, No. 5. pp. 728–735.
3. Goel J., Kadirvelu K., Rajagopal C., Kumar Garg V. Removal of lead (II) by adsorption using treated granular activated carbon: Batch and column studies. Journal of Hazardous Materials. 2005. Vol. 125, No. 1-3. pp. 211–220. DOI: 10.1016/j.jhazmat.2005.05.032.
4. Eltekova N. A., Berek D., Novák I., Belliardo F. Adsorption of organic compounds on porous carbon sorbents. Carbon. 2000. Vol. 38, No. 3. pp. 373–377. DOI: 10.1016/S0008-6223(99)00113-X.
5. Kyriakopoulos G., Doulia D. Adsorption of Pesticides on Carbonaceous and Polymeric Materials from Aqueous Solutions: A Review. Separation & Purification Reviews. 2006. Vol. 35, No. 3. pp. 97–191. DOI: 10.1080/15422110600822733.
6. López-Ramón M. V., Fontecha-Cámara M. A., Álvarez-Merino M. A., Moreno-Castilla C. Removal of diuron and amitrole from water under static and dynamic conditions using activated carbons in form of fibers, cloth, and grains. Water Research. 2007. Vol. 41, Iss. 13. pp. 2865–2870. DOI: 10.1016/j.watres.2007.02.059.
7. Álvarez-Merino M. A., López-Ramón V., Moreno-Castilla C. A study of the static and dynamic adsorption of Zn(II) ions on carbon materials from aqueous solutions. Journal of Colloid and Interface Science. 2005. Vol. 288, Iss. 2. pp. 335–341. DOI: 10.1016/j.jcis.2005.03.025.
8. Schwentner G., Kremp W., Mauritz A., Hein A. et al. Spurenstoffelimination in den Klarwerken Boblingen-Sindelfingen und Mannheim. Gemeindetag Baden-Wurttemberg. 2013. No. 5. pp. 193–201.
9. Lowenberg J., Zenker A., Krahnstover T., Böhler M. et al. Upgrade of deep bed filtration with activated carbon dosage for compact micropollutant removal from wastewater in technical scale. Water Research. 2016. Vol. 94. pp. 246–256. DOI: 10.1016/j.watres.2016.02.033.
10. Meinel F., Zietzschmann F., Ruhl A. S., Sperlich A., Jekel M. The benefits of powdered activated carbon recirculation for micropollutant removal in advanced wastewater treatment. Water Research. 2016. Vol. 91. pp. 97–103. DOI: 10.1016/j.watres.2016.01.009.
11. Krahnstover T., Wintgens Th. Separating powdered activated carbon (PAC) from wastewater — Technical process options and assessment of removal efficiency. Journal of Environmental Chemical Engineering. 2018. Vol. 6, Iss. 5. pp. 5744–5762. DOI: 10.1016/j.jece.2018.09.001.
12. Kyzas G. Z., Matis K. A. Electroflotation process: A review. Journal of Molecular Liquids. 2016. Vol. 220. pp. 657–664. DOI: 10.1016/j.molliq.2016.04.128.
13. Khelifa A., Moulay S., Naceur A. W. Treatment of metal finishing effluents by the electroflotation technique. Desalination. 2005. Vol. 181, Iss. 1-3. pp. 27–33. DOI: 10.1016/j.desal.2005.01.011.
14. Bande R. M., Prasad B., Mishra I. M., Wasewar K. L. Oil field effluent water treatment for safe disposal by electroflotation. Chemical Engineering Journal. 2008. Vol. 137, Iss. 3. pp. 503–509. DOI: 10.1016/j.cej.2007.05.003.
15. Chen X., Chen G. Electroflotation. Ed. Comninellis C., Chen G. Electrochemistry for the Environment. N.Y. : Springer, 2010. DOI: 10.1007/978-0-387-68318-8_11.
16. Gaydukova A., Kolesnikov V., Stoyanova A., Kolesnikov A. Separation of highly dispersed carbon material of OU-B grade from aqueous solutions using electroflotation technique. Separation and Purification Technology. 2020. Vol. 245. 116861. DOI: 10.1016/j.seppur.2020.116861.
17. Sveshnikova D. A., Gafurov M. M., Shabanova Z. E., Asvarov A. Sh. et al. Adsorption of sulphate ions on activated carbon. Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Khimiya i Khimicheskaya Tekhnologiya. 2009. Vol. 52, No. 4. pp. 38–41.

Language of full-text russian
Full content Buy