Journals →  Tsvetnye Metally →  2021 →  #10 →  Back

ArticleName Development of ZrO2-based refractory ceramic nanostructured materials for high-temperature applications
DOI 10.17580/tsm.2021.10.01
ArticleAuthor Korableva E. A., Anashkina A. A., Lemeshev D. O., Zhukov D. Yu.

Obninsk Research and Production Enterprise Technologiya named after A. G. Romashin JSC, Obninsk, Russia:

E. A. Korableva, Lead Process Engineer, e-mail:

A. A. Anashkina, Head of the Laboratory, Candidate of Technical Sciences


D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia:
D. O. Lemeshev, Dean of the Faculty of Engineering of Inorganic Substances and High-Temperature Materials, Candidate of Technical Sciences, Associate Professor

D. Yu. Zhukov, Advisor to the Rector of D. Mendeleev University of Chemical Technology of Russia, Candidate of Technical Sciences, Associate Professor


This paper considers the possibility of obtaining refractory heat-resistant ceramics for high-temperature applications. The paper analyses the properties of ZrObased ceramic materials that were produced using various techniques for obtaining heat-resistant refractory ceramics. Due to the use of various techniques, the authors were able to understand how such materials can be improved. It is through structural optimization that higher refractoriness and heat resistance of zirconia material stabilized with yttrium, magnesium, and calcium oxides were achieved. To produce the composite material, a cost-saving molding method was used — i.e. uniaxial pressing with additional compression in the isostatic press. The paper describes the results of a study that looked at the relationship between the chemical composition of ZrO2 ceramic materials and the chemical resistance and physical properties of ceramic refractory sectors operating at Tmax of more than 2,000 oC.
This research was funded by D.Mendeleev University of Chemical Technology of Russia. Project No.: Г-2020-21.

keywords Refractory sectors made of zirconium dioxide, lining of a high-temperature unit, heat-resistant structure, polymorphic transformations of crystalline phases, zirconium dioxide ceramics, operating temperature of over 2,000 oС.

1. Rutman D. S., Toropov Yu. S., Pliner S. Yu. High-temperature zirconia materials. Moscow : Metallurgiya, 1985. 136 p.
2. A review of the CIS zirconium refractories market. InfoMine: The Association of Independent Experts in Mineral Resources, Metallurgy and Chemical Industry. Moscow, 2011. Available at: p. 22, 71 (Accessed: 1.10.2021).
3. Khattab R. M., Wahsh M. M. S., Zawrah M. F. Microwave combustion synthesis of MgO – Al2O3 – SiO2 – ZrO2 ceramics: sinterability, micro structure and mechanical properties. Materials Chemistry and Physics. 2018. Vol. 212. pp. 78–86.
4. Mayzik M. A., Kharitonov D. V., Lemeshev D. O., Zhukov D. Yu. ZrO2 based ceramics for high temperature applications. Chernye Metally. 2020. No. 10. pp. 50–54.
5. Sokolov V. A. Production of melted stabilized zirconium dioxide. Novye ogneupory. 2015. No. 3. pp. 75–78.
6. Jain N., Barthmann F., Ansari G. RHI zirconia nozzles in Tundish application. RHI Bulletin. 2016. Vol. 1. pp. 45–50.
7. Akselrod L. M., Rumyantsev V. I. et al. Refractory zirconia-based tundish nozzles for billet casters. Novye ogneupory. 2008. No. 3. pp. 127–138.
8. Korableva E. A., Kharitonov D. V., Lemeshev D. O., Zhukova A. I. Possibility of obtaining heat-resistant structures in ZrO2-based ceramics. Chernye Metally. 2020. No. 10. pp. 55–59.
9. Promakhov V. V., Zhukov I. A., Vorozhtsov S. A., Zhukov A. S. et al. Heat-resistant ceramic zirconia-based composites. Novye ogneupory. 2015. No. 11. pp. 39–44.
10. Kingery W. D. Introduction to Ceramics : Translated from English. Moscow : Stroyizdat, 1967. 409 p.
11. Primachenko V. V., Karaulov Ya. G., Shulik I. G., Kutsenko P. A. et al. Understanding the effect of various oxide additives on the properties of vibratory cast specimens made of ZrO2 stabilized with MgO. Ogneupory i tekhnicheskaya keramika. 2003. No. 11. p. 42.
12. Karaulov A. G., Piskun T. V. A study of refractories made of brazilite stabilized with magnesium oxide. Ogneupory i tekhnicheskaya keramika. 2001. No. 1. pp. 10–12.
13. Glymond D., Vick M. J., Giuliani F., Vandeperre L. J. High-temperature fracture toughness of mullite with monoclinic zirconia. Journal of the American Ceramic Society. 2017. Vol. 100, Iss. 4. pp. 1570–1577.
14. Korableva E. A., Kharitonov D. V., Anashkina A. A., Lemeshev D. O. Creation of heat-resistant nanostructure ceramics in ZrO2 – MgO system. Tsvetnye Metally. 2019. No. 10. pp. 61–66. DOI: 10.17580/tsm.2019.10.10.
15. Buyakov A. S., Zenkina Yu. A., Buyakova S. P., Kulkov S. N. The fractal dimension of the fracture surface in a porous ZrO2 – MgO composite. Neorganicheskie materialy. 2020. Vol. 11, No. 5. pp. 1253–1259.
16. Yasuro Ikuma, Toshio Sugiyama, Junko Okano. Grain size of MgO and polymorphic phases of ZrO2 in zirconia-toughened MgO. Journal of Materials Research. 1993. Vol. 8. pp. 2757–2760. DOI: 10.1557/JMR.1993.2757.
17. Hannink R. H., Garvie R. C. Subeutectoid aged Mg-PSZ alloys with enhanced thermal up-shock resistance. Journal of Materials Science. 1982. Vol. 17. pp. 2837–2843.
18. Garvie R. C., Nicholson P. S. Phase Analysis in Zirconia systems. Journal of the American Ceramic Society. 1972. Vol. 55, No. 6. pp. 303–305.
19. GOST 2409–2014. Refractories. Method for determination of bulk density, apparent and true porosity, water absorption. Introduced: 01.09.2015.
20. GOST 7875.2–2018. Refractory products. Method for determination of thermal shock resistance on samples. Introduced: 01.04.2019.
21. Korableva E. A., Mayzik M. A., Osipova M. E., Anashkina A. A. et al. Method of making heat-resistant ceramics. Patent RF, No. 2728431. Published: 02.12.2019.

Language of full-text russian
Full content Buy