Journals →  Gornyi Zhurnal →  2021 →  #7 →  Back

ArticleName Commercial application ofuranium bioleaching
DOI 10.17580/gzh.2021.07.11
ArticleAuthor Sanakulov K. S., Meretukov M. A.

Navoi Mining and Metallurgical Combinat, Navoi, Uzbekistan:

K. S. Sanakulov, CEO, Professor, Doctor of Engineering Sciences,


M. A. Meretukov, Independent Expert, Prague, Czechia


The authors discuss one of the scientific-and-technological advance areas in mineral and mining waste processing — biotechnology which greatly improves integrated development of mineral resources and enhances environmental efficiency. The factors of biometallurgical process efficiency and bacteria resistance to impact of ions of different metals and transformation induced by chemical activity of microorganisms are examined. The most suitable microorganisms for uranium leaching from mineral raw materials and milled tailings are listed. Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans are found to be the most widely used bacteria in the bioleaching process of uranium. The bioleaching performance is discussed starting from a mineral deposit genesis which governs the type and mineralogy of rock-forming minerals. The studies into feasibility of commercial application of bacterial leaching of uranium from low-grade ore and tailings are reviewed. The examples of industrial use of bacterial leaching of uranium in various countries are given. The features of bioleaching process in operation at the foreign production plants are analyzed. The good and bad points of heap and agitation uranium bioleaching are assessed.

keywords Uranium, bioleaching, bacteria, process variables, commercial application

1. Colmer A. R., Temple K. L., Hinkle M. E. An iron-oxidizing bacterium from the acid drainage of some bituminous coal mines. Journal of Bacteriology. 1950. Vol. 59, Iss. 3. pp. 317–328.
2. Bryner L. C., Beck J., Davis D., Wilson D. Microorganisms in leaching sulfide minerals. Industrial & Engineering Chemistry. 1954. Vol. 46, Iss. 12. pp. 2587–2592.
3. Polkin S. I., Adamov E. V., Panin V. V. Technology of bacterial leaching of nonferrous and rare metals. Moscow : Nedra, 1982. 288 p.
4. Brandl H. Microbial Leaching of Metals. Biotechnology. 2001. Vol. 10. pp. 191–224.
5. Harrison V. F., Gow W. A., Ivarson K. Leaching of uranium from Elliot Lake ore in the presence of Bacteria. Canadian Mining Journal. 1966. Vol. 87. pp. 64–67.
6. Hamidian H., Rezai B., Milani S. A., Vahabzade F., Shafaie S. Z. Microbial Leaching of Uranium Ore. Asian Journal of Chemistry. 2009. Vol. 21, No. 8. pp. 5808–5820.
7. Guay R., Silver M., Torma A. E. Microbiological Leaching of a Low-Grade Uranium Ore by Thiobacillus ferrooxidans. Applied Microbiology and Biotechnology. 1976. Vol. 3. pp. 157–167.
8. Tuovinen O. H., Bhatti T. M. Microbiological leaching of uranium ores. Mining, Metallurgy & Exploration. 1999. Vol. 16, Iss. 4. pp. 51–60.
9. Muñoz J. A., González F., Blázquez M. L., Ballester A. A study of the bioleaching of a Spanish uranium ore. Part I: A review of the bacterial leaching in the treatment of uranium ores. Hydrometallurgy. 1995. Vol. 38, Iss. 1. pp. 39–57.
10. Rawlings D. E. Microbially assisted dissolution of minerals and its use in the mining industry. Pure and Applied Chemistry. 2004. Vol. 76, No. 4. pp. 847–859.
11. Rawlings D. E. Characteristics and adaptability of iron-and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microbial Cell Factories. 2005. Vol. 4. 13. DOI: 10.1186/1475-2859-4-13
12. Kawatra S. K., Natarajan K. A. Mineral Biotechnology – Microbial Aspects of Mineral Beneficiation, Metal Extraction, and Environmental Control. Littleton : Society for Mining, Metallurgy, and Exploration, Inc., 2001. 263 p.
13. Brierley J. A. Thermophilic iron-oxidizing bacteria found in copper leaching dumps. Applied and Environmental Microbiology. 1978. Vol. 36, Iss. 3. pp. 523–525.
14. Brierley J. A., Norris P. R., Kelly D. P., Le Roux N. W. Characteristics of a Moderately Thermophilic and Acidophilic Iron-Oxidizing Thiobacillus. Applied Microbiology and Biotechnology. 1978. Vol. 5, Iss. 4. pp. 291–299.
15. Holmes D. S. Biotechnology in the mining and metal processing industries: challenges and opportunities. Mining, Metallurgy & Exploration. 1988. Vol. 5, Iss. 2. pp. 49–56.
16. Blais J.-F., Tyagi R. D., Meunier N., Auclair J. C. The production of extracellular appendages during bacterial colonization of elemental sulphur. Process Biochemistry. 1994. Vol. 29, Iss. 6. pp. 475–482.
17. Twardowska I. The role of Thiob acillus ferrooxidans in pyrite oxidation in colliery spoil tips. I: Model investigations. Acta Microbiologica Polonica. 1986. Vol. 35, No. 3-4. pp. 291–303.
18. Twardowska I. The role of Thiobacillus ferrooxidans in pyrite oxidation in colliery spoil tips. II. Investigation of samples taken from spoil tips. Acta Microbiologica Polonica. 1987. Vol. 36, No. 1-2. pp. 101–107.

19. Mular A. L., Halbe D. N., Barratt D. J. Mineral Processing Plant Design, Practice, and Control Proceedings. Littleton : Society for Mining, Metallurgy, and Exploration, Inc., 2002. Vol. 1. 2500 p.
20. Pronk J. T., de Bruyn J. C., Bos P., Kuenen J. G. Anaerobic Growth of Thiobacillus ferrooxidans. Applied and Environmental Microbiology. 1992. Vol. 58, Iss. 7. pp. 2227–2230.
21. Barrett J., Hughes M., Karavaiko G., Spencer P. Metal extracti on by bacterial oxidation of minerals. Ellis Horwood Series in Inorganic Chemistry. New York : Ellis Horwood, 1993. 191 p.
22. Cerdá J., González S., Ríos J. M., Quintana T. Uranium concentrates bioproduction in Spain: A case study. FEMS Microbiology Reviews. 1993. Vol. 11, Iss. 1-3. pp. 253–259.
23. Schippers A., Hallmann R., Wentzien S., Sand W. Microbial diversity in uranium mine waste heaps. Applied and Environmental Microbiology. 1995. Vol. 61, No. 8. pp. 2930–2935.
24. Benedetto J. S., de Almeida S. K., Gomes H. A., Vazoller R. F., Ladeira A. C. Q. Monitoring of sulfatereducing bacteria in acid water from uranium mines. Minerals Engineering. 2005. Vol. 18, Iss. 13-14. pp. 1341–1343.
25. Ehrlich H. L., Brierley C. L. Microbial Mineral Recovery . New York : McGraw-Hill, 1990. 454 p.
26. Garcia Júnior O. Bacterial leaching of uranium ore from Figueira – PR, Brazil, at laboratory and pilot scale. FEMS Microbiology Reviews. 1993. Vol. 11, Iss. 1-3. pp. 237–242.
27. Dwivedy K. K., Mathur A. K. Bioleaching – our experience. Hydrometallurgy. 1995. Vol. 38, Iss. 1. pp. 99–109.
28. Treatment of Liquid Effluent from Uranium Mines and Mills : Report of a co-ordinated research project 1996–2000. IAEA-TECDOC-1419. Vienna : International Atomic Energy Agency, 2004. 268 p.
29. Campbell K. M., Gallegos T. J., Landa E. R. Biogeochemical aspects of uranium mineralization, mining, milling, and remediation. Applied Geochemistry. 2015. Vol. 57. pp. 206–235.
30. Watling H. R. Review of Biohydrometallurgical Metals Extraction from Polymetallic Mineral Resources. Minerals. 2015. Vol. 5, Iss. 1. pp. 1–60.
31. Pantelis G., Ritchie A. I. M. Rate-limiting factors in dump leaching of pyritic ores. Applied Mathematical Modelling. 1992. Vol. 16, Iss. 10. pp. 553–560.
32. Abhilash, Mehta K. D., Kumar V., Pandey B. D., Tamrakar P. K. Column Bioleaching of a Low-Grade Silicate Ore of Uranium. Mineral Processing and Extractive Metallurgy Review. 2010. Vol. 31, Iss. 4. pp. 224–235.
33. Rawlings D. E. (Ed.). Biomining: Theory, Microbes and Industrial Processes. Berlin : Springer-Verlag, 1997. 302 p.
34. Rawlings D. E., Dew D., du Plessis C. Biomineralization of metal-containing ores and concentrates. Trends in Biotechnology. 2003. Vol. 21, Iss. 1. pp. 38–44.
35. Eisapour M., Keshtkar A., Moosavian M. A., Rashidi A. Bioleaching of uranium in batch stirred tank reactor: Process optimization using Box–Behnken design. Annals of Nuclear Energy. 2013. Vol. 54. pp. 245–250.
36. Abhilash, Pandey B. D., Singh A. K. Comparative Performance of Uranium Biole aching from Low Grade Indian Apatite Rock in Column and Bioreactor. Energy Procedia. 2013. Vol. 39. pp. 20–32.
37. Sanakulov K. S., Sagdieva M. G., Tagaev I. A.Biotechnological processes in metallurgy (biohydrometallurgy) : Teaching aid. Tashkent : Muharrir nashriyoti, 2019. 356 p.
38. Sanakulov K. S. Mining waste management concept and solutions. Gornyi vestnik Uzbekistana. 2019. No. 2. pp. 42–56.
39. Sanakulov K., Kadyrov A. A. Strategy of long-term development of the Kyzylkum region. Germany : Publishing house Artem Cologne, 2021. 428 p.
40. Sanakulov K. S., Sagdieva M. G., Tagaev I. A. Biohydrometallurgy : Reality, challenges and prospects. Tashkent : Muharrir nashriyoti, 2019. 416 p.
41. Sanakulov К., Tagaev I. Possibility to use bacteria for processing of mineralized mass of the Muruntau pit and the gold plant tailings. Tsvetnye Metally. 2020. No. 2. pp. 5–11. DOI: 10.17580/tsm.2020.02.01

Language of full-text russian
Full content Buy