Journals →  Gornyi Zhurnal →  2021 →  #6 →  Back

ArticleName High-quality magnetite–hematite concentrate production by spiral separation
DOI 10.17580/gzh.2021.06.07
ArticleAuthor Prokopiev S. A., Prokopiev E. S., Emelyanova K. K., Napolskikh S. A.

Spirit Science and Production, Irkutsk, Russia1 ; Institute of the Earth’s Crust, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia2:

S. A. Prokopiev1,2, Head of Integrated Mineral Resources Utilization Department, Chairman of Board of Directors, Candidate of Engineering Sciences
E. S. Prokopiev1,2, Director of Technology and Innovation, Engineer at Integrated Mineral Resources Utilization Department


Spirit Science and Production, Irkutsk, Russia:
K. K. Emelyanova, Preparator, ekk@spirit-irk.ry


Stoilensky GOK, Stary Oskol, Russia:
S. A. Napolskikh, CEO, Head of Ore Division


The longstanding and fruitful activities of Stoilensky GOK build upon persistent improvement and advance of production. An emphasis is laid on enhanced operating efficiency at minimized environmental impact. Production of high-quality magnetite–hematite concentrate by spiral separation at primary stages of processing can enable generally higher quality of the finished concentrate. For another thing, removal of dissociated magnetite and hematite from primary middlings eliminates over-sludging of the minerals and, accordingly, reduces iron loss with slime. The research and field trials provided assessment of feasibility of high-quality magnetite–hematite concentrate production by spiral separation at the primary stages of processing in the conditions of concentrating plant at Stoilensky GOK.
The authors appreciate participation of S. A. Napolskikh, CEO and Head of Ore Division at Stoilensky GOK, in these studies.

keywords Stoilensky GOK, high-quality iron ore concentrate, magnetite-hematite concentrate, spiral separation, gravity-magnetic separation, iron content

1. Prokopyev S. A., Pelevin A. E., Napolskikh S. A., Gelbing R. A. Staged screw separation of magnetite concentrate. Obogashchenie Rud. 2018. No. 4. pp. 28–33. DOI: 10.17580/or.2018.04.06
2. Prokopev S. A. Technology of stage-by-stage magnetite concentrate production by spiral separation : Dissertation … of Candidate of Engineering Sciences. Ekaterinburg, 2019. 161 p.
3. Kulikov B. F., Zuev V. V., Vaynshenker I. A., Mitenkov G. A. Mineralogical reference book of dresser technologist. 2nd enlarged and revised edition. Moscow : Nedra, 1985. 264 p.
4. Avdokhin V. М., Gubin S. L. Current state and main directions of development of deep iron ore beneficiation processes. Gornyi Zhurnal. 2007. No. 2. pp. 58–64.
5. Severov V. V. Reverse flotation of ferruginous quartzite with cation and nonionic collectors : Dissertation … of Candidate of Engineering Sciences. Moscow, 2011. 215 p.
6. Ostapenko P. E. (Ed.). Technological evaluation of minerals : Handbook, 4 Books, Moscow : Nedra, 1990–1991.
7. Zhuravleva E. S. Scientific and experimental justification of electrochemical methods to improve technological performances of draft magnetite concentrates treatment : Dissertation … of Candidate of Engineering Sciences. Moscow, 2017. 111 p.
8. Jankovic A., Valery W. Reducing grinding energy and cost — magnetite iron ore design case study. Obogashchenie Rud. 2012. No. 5. pp. 3–8.
9. Dowling E. C., Corpi P. A., Mclor R. E., Rose D. J. Application of high pressure grinding rolls in an autogenous – pebble milling circuit. Proceedings of SAG 2001 Conference. Vancouver, 2001. Vol III. pp. 194–201.
10. Gao M., Laine G., Schwartz P., Holmes R. Energy efficient technologies for fine and ultrafine grinding. AusIMM Bulletin. 2003. July/August. pp. 36–40.
11. Mineral exploration, mining and geoscience overview 2011. Iqaluit : Aboriginal Affairs and Northern Development Canada, 2011. 71 p.
12. Bascetin A., Adiguzel D., Tuylu S., Ozdemir O. New technologies on mine process tailing disposal. Jornal of Geological Resource and Engineering. 2016. Vol. 2. pp. 63–72.
13. Arjmand R., Massinaei M., Behnamfard A. Improving flocculation and dewatering performance of iron tailings thickeners. Journal of Water Process Engineering. 2019. Vol. 31. DOI: 10.1016/j.jwpe.2019.100873
14. Pelevin A. E. Ways of efficiency increasing of iron ore raw materials concentration technology. Chernaya metallurgiya. Byulletin nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2019. Vol. 75, No. 2. pp. 137–146.
15. Arsentev V. A., Dendyuk T. V. Development and analysis of flotation and magnetic refinement of magnetite concentrates. Obogashchenie Rud. 1987. No. 3.
16. Prabal Kumar Agrwal, Sanket Bacchuwar, Rao G. V., Sharma S. K. Оptimisation of process parameters of spiral concentrator for beneficiation of iron ore stacked slimes from Kirandul, Chattisgarh, India. Proceedings of XXVIII International Mineral Processing Congress. Québec, 2016.
17. Sadeghi M., Bazin C., Devin P.-O., Lavoie F., Hodouin D., Renaud M. Control of spiral concentrators for the concentration of iron ore. Proceedings of XXVIII International Mineral Processing Congress. Québec, 2016. Vol. 7. pp. 4534–4545.
18. Khokhulya M. S., Fomin A. V., Alekseeva S. A., Karpov I. V. Substantiation and development of process designs for enhanced hematite production at OLKON. Problems and Prospects of Efficient Mineral Processing in the 21st Century (Plaksin’s Lectures-2019) : International Conference Proceedings. Irkutsk, 2019. pp. 226–229.
19. Prokopev S. A., Pelevin A. E., Prokopev E. S., Ivanova K. K. Increasing the integrity of iron-ore raw material use with the help of screw separation. Izvestiya vuzov. Gornyi zhurnal. 2019. No. 6. pp. 70–80.

Language of full-text russian
Full content Buy