Journals →  Gornyi Zhurnal →  2021 →  #6 →  Back

ArticleName Stabilization of sand pit wall permeability using Ranney wells
DOI 10.17580/gzh.2021.06.01
ArticleAuthor Kryuchkov A. V., Genzel G. N., Zaitsev D. A., Fedorenko I. N.

Stoilensky GOK, Stary Oskol, Russia:

A. V. Kryuchkov, Director of Production Operations


NOVOTEK Center for Science and Technology, Belgorod, Russia:
G. N. Genzel, Deputy Director of Research and Design, Candidate of Geologo-Mineralogical Sciences


Belgorod State University, Belgorod, Russia:
D. A. Zaitsev, Associate Professor at the Institute of Geosciences, Candidate of Engineering Sciences,


Belspetsmontazh, Belgorod, Russia:
I. N. Fedorenko, CEO


Safety of operating conditions is the paramount objective in any mine design, planning, construction and performance. In the Kursk Magnetic Anomaly, the emphasis is laid on the integrated and efficient protection of surface and underground mines from groundwater inflows. Stoilensky iron ore field hydrogeologically adjoins the northeast of Dnepr–Donets artesian basin which is contiguous to the southwest slope of Voronezh crystalline massif. The field mostly occurs in the zone of damaged groundwater dynamics under the impact of drainage facilities at opencasts of Lebedinsky and Stoilensky GOKs (Mining and Processing Plants) and at Gubkin Mine, hydraulic fills and tailings ponds of operating processing factories, and Stary Oskol water storage basin. The adversities of groundwater catchment inside sand pit wall rock mass are analyzed. The capabilities of a pit wall drainage system in stabilization of sand permeability are discussed. The experience gained in design and construction of a local drainage system based on Ranney-type well within the limits of Novaya station of an operating opencast is summarized.

keywords Drainage system, hydrogeological conditions, groundwater, water inflow, Ranney-type well, horizontal drainage boreholes.

1. Dassargues A. Hydrogeology: Groundwater Science and Engineering. Boca Raton : CRC Press, 2018. 492 p.
2. Zong-Xian Zhang. Rock Fracture and Blasting. Theory and Applications. Oxford : Butterworth-Heinemann, 2016. 528 p.
3. Cheskidov V. V., Lipina A. V., Melnichenko I. A. Integrated monitoring of engineering structures in mining. Eurasian Mining. 2018. No. 2. pp. 18–21. DOI: 10.17580/em.2018.02.05
4. Nan Li, Bingxiang Huang, Xin Zhang, Tan Yuyang, Baolin Li. Characteristics of microseismic waveforms induced by hydraulic fracturing in coal seam for coal rock dynamic disasters prevention. Safety Science. 2019. Vol. 115. pp. 188–198.
5. Epov A. V. Development of underground drainage complex of “Stoilenskiy Mining and Concentrating Plant” joint stock company. Gornyi Zhurnal. 2011. No. 6. pp. 46–48.
6. Pogoreltseva E. I., Zaitsev D. A., Khaustov V. V. The transformation of the composition of the groundwater in the area of high technogenic load mining productions. Proceedings of the 19th International Multidisciplinary Scientific GeoConferences. Albena, 2019. Book 1.2, Vol. 19. pp. 541–548.
7. Sergeev S. V., Lyabakh A. I., Zaytsev D. A. The experience of the rich iron ores opencast of Jakovlevsky deposit KMA (Kursk Magnetic Anomaly). Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Ser.: Estestvennye nauki. 2011. No. 3(98). pp. 200–208.
8. Malina N. P., Anpilov O. V. Drainage system at Lebedinsky GOK. Gornyi Zhurnal. 2017. No. 5. pp. 58–61. DOI: 10.17580/gzh.2017.05.13
9. Petin A. N., Kramchaninov N. N., Pogoreltsev I . A., Ukolov I. M. Estimation of technogenic impact on underground waters in zone of Starooskol-Gubkin industrial complex influence. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2013. Vol. 15, No. 3-3. pp. 949–953.
10. Bocharov V. L. The impact of mining on groundwater Starooskol-Gubkinsky district of the KMA. Vestnik Boronezhskogo gosudarstvennogo universiteta. Ser.: Geologiya. 2017. No. 4. pp. 95–99.
11. Petina M. A., Egorov I. A., Kovalenko A. N., Reshetnikova L. K. On the development of a simulation dynamics model of the groundwater distribution. Nauchnyi rezultat. Informatsionnye tekhnologii. 2018. Vol. 3, No. 1. pp. 3–10.
12. Voropaev B. P., Genzel G. N., Gladchenko E. S., Elantseva L. A., Peshkov A. I. Project solutions and exploration experience of dehydrating system of Stoilenskiy Mining and Concentrating Plant quarry, protection and rational usage of region water sources. Gornyi Zhurnal. 2011. No. 6. pp. 24–29.
13. Belyakov S. I., Kalyagin I. A., Timoshkov I. A., Peshkov A. I., Dubrovskiy V. Ya. Mining and boring technologies in context of quarries protection from undergr ound water. Gornyi Zhurnal. 2011. No. 6. pp. 29–32.
14. Ponomarenko Yu. V., Voronin A. A. Application of radial drainages to drain heterogeneous rock mass. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Ser.: Estestvennye nauki. 2013. No. 24(167). pp. 162–168.
15. Mansel H., Eichler R., Nitz M., Biedermann M., Blankenburg R., Drebenstedt C. Dewatering of Opencast Mines Using Model-Based Planned Horizontal Wells. 10th International Conference on Acid Rock Drainage & IMWA Annual Conference. Santiago, 2015. Vol. 1. pp. 1671–1680.
16. Eichler R. A., Drebenstedt C. Innovative Dewatering Concepts for Open Cast Mines Using Horizontal Wells (HDD-Wells). Mine Planning and Equipment Selection : Proceedings of the 22nd MPES Conference. Cham : Springer, 2014. Vol. 1. pp. 697–706.
17. Elantseva L. A., Zaytsev D. A., Fomenko S. V. Hydrogeological forecasts for dewatering diamond deposit named after V. Grib. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2019. Vol. 330, No. 7. pp. 53–61.
18. Struzina M., Müller M., Drebenstedt C., Mansel H., Jolas P. Dewatering of Multi-aquifer Unconsolidated Rock Opencast Mines: Alternative Solutions with Horizontal Wells. Mine Water and the Environment. 2011. Vol. 30, Iss. 2. pp. 90–104.
19. Shorokhov V. P., Radchenko A. T. Borodinsky opencast mine field drainage with horizontal drainage boreholes as an alternative to the underground method. Ugol. 2013. No. 6. pp. 18–21.

Language of full-text russian
Full content Buy