Journals →  Gornyi Zhurnal →  2021 →  #4 →  Back

HYDROGEOLOGY AND ENVIRONMENTAL PROTECTION
ArticleName Application of information technologies in the analyses of groundwater in the Upper Kama Potash–Magnesium Salt Deposits
DOI 10.17580/gzh.2021.04.09
ArticleAuthor Sennov A. S., Mukhametdinov A. V., Myasichenko A. I., Kalugin A. V.
ArticleAuthorData

Branch of "VNII Galurgii" JSC in Saint Petersburg:

A. S. Sennov, Senior Researcher, Candidate of Geological and Mineralogical Sciences, Andrey.Sennov@uralkali.com
A. V. Mukhametdinov, Senior Researcher
A. I. Myasichenko, Junior Researcher
A. V. Kalugin, Junior Researcher

Abstract

The article gives a review of the software techniques used in solution of actual applied problems in the mining industry. The adequate decision-making requires various software techniques. The list of the applied problems includes processing of remote sensing data, digital elevation modeling and generation of other digital models of terrain, localization of catchment basins and river networks, or morphometric analysis. Various geoinformation systems are used to this end. Another task is hydrogeological patterning of aquifers. It is required to use the methods of multivariate statistics, such as the factor analysis, for instance. The multidimensionality and complexity of natural and engineering systems also condition the use of the mathematical modeling apparatus based on the numerical solution of second-order elliptical equations in terms of partial derivatives. Natural water feature diverse physicochemical processes, which should also be calculated. The modeling outcome is used to predict different processes in the nature-and-mine system. For example, flow of pollutions in underground hydrosphere, lowering of the water level, dissolution–precipitation reactions, etc. Applied problem solving requires using wide ranges of mathematical methods and relevant software techniques.

keywords Applied mathematical modeling, software, digital elevation model, geomatics, geoinformation technologies, hydrogeodynamic and hydrogeochemical modeling
References

1. Sennov A. S., Mukhametdinov A. V. Use of information technologies in ground water analysis in the Upper Kama Potash Salt Deposit. Current Tendencies in Theory and Practice of Mineral Mining and Waste Management : International Conference Proceedings. Yekaterinburg, 2019. pp. 103–106.
2. Wilson J. P., Gallant J. C. Terrain Analysis: Principles and Applications. New York : John Wiley & Sons, 2000. 520 p.
3. Glotov A. A. Application of DEM for tasks of rational nature management and monitoring of natural processes. Geomatika. 2013. No. 4. pp. 32–36.
4. Cheskidov V. V., Lipina A. V., Melnichenko I. A. Integrated monitoring of engineering structures in mining. Eurasian Mining. 2018. No. 2. pp. 18–21. DOI: 10.17580/em.2018.02.05
5. Documentation for QGIS 2.18. Available at: https://docs.qgis.org/2.18/ru/docs/# (accessed: 12.03.2021).
6. Software. Available at: http://www.saga-gis.org/en/index.html (accessed: 12.03.2021).
7. 5 Free Global DEM Data Sources – Digital Elevation Models. 2021. Available at: https://gisgeography.com/free-global-dem-data-sources/ (accessed: 12.03.2021).
8. Water Resources Groundwater Software. U.S. Geological Survey. Available at: water.usgs.gov/software/lists/groundwater (accessed: 12.03.2021).
9. PHREEQC Version 3. U.S. Geological Survey, 2020. Available at: https://www.usgs.gov/software/phreeqc-version-3 (accessed: 12.03.2021).
10. Xianfang Sun, Rosin P. L., Martin R. R., Langbein F. C. Fast and Effective Feature-Preserving Mesh Denoising. IEEE Transactions on Visualization and Computer Graphics. 2007. Vol. 13, No. 5. pp. 925–938.
11. Wang L., Liu H. An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. International Journal of Geographical Information Science. 2006. Vol. 20, Iss. 2. pp. 193–213.
12. Cheng-Zhi Qin, A-Xing Zhu, Tao Pei, Bao-Lin Li, Scholten T. et al. An approach to computing topographic wetness index based on maximum downslope gradient. Precision Agriculture. 2011. Vol. 12, Iss. 1. pp. 32–43.
13. Karfidova E. A., Makee v V. M., Kravchenko I. M. Modeling the surface runoff network to ensure geological safety at the Verkhnekamsk deposit. Izvestiya vuzov. Gornyi zhurnal. 2018. No. 8. pp. 91–101.
14. Sennov A. S. A possible approach to the suprasalt formation hydrogeodynamic schematization of Verkhnekamskoe deposit of potassium salts. Gornyi Zhurnal. 2016. No. 4. pp. 48–51. DOI: 10.17580/gzh.2016.04.09
15. Rowiński P. M. Publications of the Institute of Geophysics Polish Academy of Sciences. Warszawa, 2008. E-10 (406). Hydraulic Methods for Catastrophes: Floods, Droughts, Environmental Disasters. 207 p.
16. Alvarez P. J. J., Illman W. A. Bioremediation and Natural Attenuation: Process Fundamentals and Mathematical Models. New York : John Wiley & Sons, Inc., 2006. 612 p.
17. MODFLOW-NWT: A Newton Formulation for MODFLOW-2005. USGS, 2020. Available at: https://www.usgs.gov/software/modflow-nwt-a-newton-formulation-modflow-2005 (accessed: 12.03.2021).
18. Chaikovskiy I. I., Korotchenkova O. V., Trapeznikov D. E. A New Genetic Type of Leaching Zone in Salts of the Verkhnyaya Kama Potassium Salt Deposit: Hydrochemical, Mineralogical, and Structural Indicators. Lithology and Mineral Resources. 2019. Vol. 54, No. 4. pp. 308–319.
19. Pitzer K. S. Thermodynamics of electrolytes. I. Theoretical basis and general equations. Journal of Physical Chemistry. 1973. Vol. 77, Iss. 2. pp. 268–277.
20. Steding S., Zirkler A., Kühn M. Geochemical reaction models quantify the composition of transition zones between brine occurrence and unaffected salt rock. Chemical Geology. 2020. Vol. 532. DOI: 10.1016/j.chemgeo.2019.119349
21. Woods J. A., Teubner M. D., Simmons C. T., Narayan K. A. Numerical error in groundwater flow and solute transport simulation. Water Resources Research. 2003. Vol. 39, No. 6. 1158. DOI: 10.1029/2001WR000586

Language of full-text russian
Full content Buy
Back