Журналы →  Tsvetnye Metally →  2020 →  №12 →  Назад

INSTITUTE GIPRONICKEL LLC. COURSE FOR TRANSFORMATION
HYDROMETALLURGY
Название Behaviour of selenium and tellurium in copper electrowinning process
DOI 10.17580/tsm.2020.12.12
Автор Zatitskiy B. E., Trubina O. A.
Информация об авторе

Gipronikel Institute LLC, Saint Petersburg, Russia:

B. E. Zatitskiy, Senior Researcher at the Hydrometallurgy Laboratory, e-mail: ZatitskiyBE@nornik.ru
O. A. Trubina, Lead Engineer at the Hydrometallurgy Laboratory

Реферат

The revamping project to be implemented at Norilsk Nickel’s refining facilities includes commissioning of a nickel plant and increasing the output of copper obtained by electrowinning from liquors produced in matte leach processes. At the revamped facility, a major portion of selenium and a considerable share of tellurium will be transferred with calciner gases to a sulphuric acid facility. The microimpurities that remain after calcination get distributed between the leachates. Considering that semiproducts keep circulating between the nickel and copper plants, selenium and tellurium can accumulate in the product solutions and thus affect the quality of finished metals. This paper examines the behaviour of selenium and tellurium in copper electrowinning process and formulates certain requirements for copper electrolyte that will ensure production of high-purity copper cathodes for commercial application. It is shown that, at low concentrations of selenium (IV) and tellurium (IV) in the copper electrolyte, their discharge follows the laws of diffusion kinetics, i.e. occurs at maximum current, together with cathode reduction of copper, and the concentrations of selenium and tellurium in copper change in correlation with the concentration of chalcogenides in the solution. Simultaneously with cathode reduction on a lead anode, selenium (IV) and tellurium (IV) get oxidized to selenium (VI) and tellurium (VI) that are not precipitable with copper and get accumulated in circulating solutions. It is shown that the concentration of chalcogenides has a negative first order from the removal of copper per unit volume of electrolyte. That’s why the contamination of cathode copper with selenium and tellurium rapidly decreases with an increase in copper removal. The paper provides data that can be used to estimate the allowable concentration of toxic microimpurities in the feed electrolyte that would not affect the desired copper purity level.

Ключевые слова Copper electrowinning, copper cathodes, copper electrolyte, selenium, tellurium
Библиографический список

1. Braun T. B., Rawling J. R., Richards K. J. Factors affecting the quality of electrorefined cathode copper. International Symposium on Copper Extraction and Refining. Las Vegas, 22–26 February 1976. Vol. 1. New York : AIME, 1976. pp. 521–524.
2. GOST 859–2001. Сорреr. Grаdes. Introduced: 01.03.2002.
3. Feyaerts K., Huybrechts P., Schamp J., van Humbeeck J., Verlinden B. The effects of impurities on the recrystallization behavior of tough-pitch hot rolled copper rod. Wire Journal International. 1996. Vol. 26, No. 11. pp. 68–76.
4. Altushkin I. A., Korol Yu. A., Levin V. V., Bakin A. V. Extraction of copper from the Gumeshev mine waters. Tsvetnye Metally. 2019. No. 6. pp. 13–19. DOI: 10.17580/tsm.2019.06.02.
5. International Copper Study Group. The World Copper Factbook 2018. Available at: https://www.icsg.org/index.php/component/jdownloads/finish/170/2876.
6. Robinson T. G., Sole K. C., Sandoval S., Moats M. S., Siegmund A., Davenport W. G. Copper electrowinning: 2013 world tankhouse operating data. Global Cu EW survey spreadsheet. Proceedings of Copper-Cobre 2013. Santiago, Chile, 2013. Vol. V. pp. 3–14.
7. Lian-Kui Wu, Chao-Chao Li, Ze-Feng Zhang, Hua-Zhen Cao, Jin Xue, Guo-Qu Zheng. Effect of tellurium on copper electrodeposition in copper sulfate-sulfuric acid system. Journal of The Electrochemical Society. 2017. Vol. 164, No. 7. pp. D451–D456.
8. Carezonnelle P., Lamberts L. Electrochemical study of the copper-selenium system using carbon paste electrode. Electrochmica Acta. 1992. Vol. 37, No. 8. pp. 1321–1325.
9. Carbonelle P., Lamberts L. A voltammetric study of the electrodeposition of the Cu + Se system. Electroanalytical Chemistry. 1992. Vol. 340, No. 1-2. pp. 53–71.
10. Koczykla K., Kowalik R., Mech K., abiski P. Electrochemical deposition of selenium on copper. Key Engineering Materials. 2016. Vol. 682. pp. 189–196. DOI: 10.4028/www.scientific.net/KEM.682.189.
11. Baral A., Sarangi C. K., Tripathy B. C., Bhattacharya I. N., Subbaiah T. Copper electrodeposition from sulfate solutions – Effects of selenium. Hydrometallurgy. 2014. Vol. 146. pp. 8–14.
12. Safizadeh F., Lafront A.M., Ghali E., Houlachi G. An investigation of the influence of selenium on copper deposition during electrorefining using electrochemical noise analysis. Hydrometallurgy. 2012. Vol. 111. pp. 29–34.
13. Kowalik R. Microgravimetric studies of selenium electrodeposition onto different substrates. Archives of Metallurgy and Materials. 2014. Vol. 59, No. 3. pp. 871–877.
14. Ngandu F. Investigating the effect of selenium and thiourea concentration on copper electrowinning : thesis … for the degree of master of engineering. Stellenbosch University, 2016.
15. Rudnik E., Kozowski J. Electrochemical studies on the codeposition of copper and tellurium from acidic nitrate solution. Electrochimica Acta. 2013. Vol. 107. pp. 103–110.
16. GOST R 57061–2016. Copper. Measurement of impurities mass fraction in copper by an inductively coupled plasma mass spectrometry method. Introduced: 01.07.2017.
17. Buketov E. A., Ugorets M. Z. Hydrochemical oxidation of chalcogens and chalcogenides. Alma-Ata : Nauka, 1975. 326 p.
18. Mokmeli M. Kinetics of selenium and tellurium removal with cuprous ion from copper sulfate-sulfuric acid solution : thesis ... for the degree of doctor of philosophy. British Columbia, Vancouver, 2014.

Language of full-text русский
Полный текст статьи Получить
Назад