Журналы →  Chernye Metally →  2020 →  №11 →  Назад

Metal science and metallography
Название Peritectoid carbide transformation based on ε-carbide Fe2C in Fe-C-system alloys. Part 1. Basics of theory
DOI 10.17580/chm.2020.11.02
Автор S. V. Davydov
Информация об авторе

Bryansk State Technical University (Bryansk, Russia):

S. V. Davydov, Dr. Eng., Prof., Dept. of Tribotechnical Materials Science and Technology of Materials, E-mail: fulleren_grafen@mail.ru

Реферат

In the present work low-temperature carbide phase transformations in the system of Fe-C alloys based on ε-сarbide Fe2C with consideration of identification of θ-Fe3C cement as a solid solution were studied. It has been proved that the θ-Fe3C cement slurry is colourfastonide, and the ε-Fe2C carbide slurry is bertollide. When tempering hardened steels, ε-сarbide Fe2C is emitted in the structure of hardened martensite, which is absent in the phase diagram of iron-carbon system alloys. It is believed that ε-сarbide Fe2C is not a stable phase, and since it is metastable, it is formed only in quenched steels under non-equilibrium conditions. The isolation and dissolution of ε-сarbide Fe2C is a classic phase transformation and the absence of this transformation on the diagram is not caused by the metastable phase of ε-сarbide Fe2C, but by the incomplete iron-carbon diagram. The martensite decomposition phase transformation is based on the formation of carbon enriched zones. The processes of carbon segregation on dislocation structures and grid planes of martensite create zones with excess energy. Beginning approximately with temperature 100 °С in structure of martensite begins to allocate ε-сarbide Fe2C, finishing a stage of two-phase segregational disintegration of martensite. At rather small concentrations of carbon in cluster zones the fastest and most effective way of relaxation of redundant energy in these zones, as well as in the tetragonal lattice of martensite is the formation of phases with low value of work of nucleation, first of all ε-сarbide Fe2C and α-Fe(C) or ferrite. The main stages of phase transformations in the peritectoid reaction of martensite decomposition are considered. It is proposed to introduce the peritectoid transformation horizontal at 382 °C and the peritectic transformation horizontal of cement at 1650 °C into the Fe-C alloy state diagram.

Ключевые слова Peritectoid transformation, peritectic transformation, coloronide, bertollide, cement solid solution, ε-carbide Fe2C, cement θ-Fe3C, pearlite, ferrite
Библиографический список

1. Volkov V. A., Ulyanov A. I., Chulkina A. A., Elkin I. A. Phase formation mechanisms in the mechanosynthesis of Fe-C-alloys. Khimicheskaya fizika i mezoskopiya. 2018. Vol. 20. No. 4. pp. 502–507.
2. Furuhara T., Takayama N., Miyamoto G. Key Factors in Grain Refinement of Martensite and Bainite. Materials Science Forum. 2010. Vol. 638-642. pp. 3044–3049.

3. Gavriulik V. G., Theisesn W. Low-temperature martensitic trasnformation in tool steels in relation to their deep cryogenic treatment. Acta Mater. 2013. Vol. 61. No. 5. pp. 1705–1715.
4. San Martin D., van Dijk N. H. Real-time martensitic transformation kinetics in maraging steel under high magnetic fields. Mat. Sci. Eng: A. 2010. Vol. 527. pp. 5241–5245.
5. Kundu S., Bhadeshia H. K. D. H. Crystallographic texture and intervening transformations. Scripta Materialia. 2007. Vol. 57. pp. 869–872.
6. Shibata A., Morito S., Furuhara T., Maki T. Substructure of lenticular martensites with different martensite start temperatures in ferrous alloys. Acta Materialia. 2009. Vol. 57. pp. 483–492.
7. Kim D., Lee S.-J., De Cooman B. C. Microstructure of Low C Steel Isothermally transformed in the Ms to Mf Temperature Range. Metall. and Mater. Trans. A. 2012. Vol. 43. pp. 4967–4983.
8. Konyaeva M. A., Medvedev N. I. Electronic structure, magnetic properties and stability of binary and ternary carbides (Fe,Cr)3С and (Fe,Cr)7С3. Fizika tverdogo tela. 2009. Vol. 51, Iss. 10. pp. 1965–1969.
9. Cementite in Carbon Steels: Collective Monograph. Edited by V. М. Schastlivtseva. Ekaterinburg: Izdatelstvo UMTs UPI, 2017. 380 p.
10. Barinov V. A., Kazantsev V. A., Surikov V. T. Temperature studies of mechanically synthesized cementite. Fizika metallov i metallovedenie. 2014. Vol. 115. No. 6. pp. 614–623.
11. Barinov V. A., Tsurin V. A., Kazantsev V. A., Surikov V. T. Carbonization of α-Fe during mechanosynthesis. Fizika metallov i metallovedenie. 2014. Vol. 115. No. 1. pp. 57–73.
12. Barinov V. A., Protasov A. V., Surikov V. T. Investigation of mechanosynthesized Hagg χ-carbide. Fizika metallov i metallovedenie. 2015. Vol. 116. No. 8. pp. 835–845.
13. Voronin V. I., Berger I. F., Gornostyrev Yu. N., Urtsev V. N., Kuznetsov A. R., Shmakov A. V. The composition of the cementite depending on the temperature. In-situ neutron diffraction and ab-initio calculation results. Pisma v zhurnal eksperimentalnoy i teoreticheskoy fiziki. 2010. Vol. 91. Iss. 3. pp. 154–157.
14. Lobodyuk V. A. Size effect during martensite transformation. Fizika metallov i metallovedenie. 2005. Vol. 99. No. 2. pp. 29–40.
15. Chirkov P. V., Mirzoev A. A., Mirzaev D. A. Tetragonality and distribution of carbon atoms in Fe – C martensite based on molecular dynamics modeling. Fizika metallov i metallovedenie. 2016. Vol. 117. No. 1. pp. 34–41.
16. Zalkin V. M., Kraposhin V. S. The structure of iron-carbon melts. On the stability of cementite in melts. Metallovedenie i termicheskaya obrabotka metallov. 2010. No. 1. pp. 15–18.
17. Bataleva Yu. V., Palyanov Yu. N., Borzdov Yu. M., Bayukov O. A., Sobolev N. V. Conditions for the formation of graphite and diamond from iron carbide at P, T-parameters of the lithospheric mantle. Geologiya i geofizika. 2016. Vol. 57. No. 1. pp. 225–240.
18. Kosolapova T. Ya. Carbides. Moscow: Metallurgiya, 1968. 300 p.
19. Gulyaev A. P. About the iron-carbon diagram. Metallovedenie i termicheskaya obrabotka metallov. 1990. No. 7. p. 21.
20. Zakharova A. M. State diagrams of binary and ternary systems. 2nd edition, revised and enlarged. Moscow: Metallurgiya, 1978. 295 p.
21. Okishev K. Yu. Analysis of the possibility of redistribution of carbon atoms in the cementite lattice. Vestnik YuUrGU. Seriya: Metallurgiya. 2011. No. 36. pp. 56–60.
22. Medvedeva N. I., Karkina L. E., Ivanovsky A. L. Influence of the effects of atomic disordering and nonstoichiometry along the carbon sublattice on the band structure of Fе3C cementite. Fizika metallov i metallovedenie. 2003. Vol. 96. No. 5. pp. 16–20.
23. Zhukov A. A. On the phase diagram of alloys of the Fe - C system. Metallovedenie i termicheskaya obrabotka metallov. 1988. No. 4. pp. 2–9.
24. Zhukov A. A. Geometric thermodynamics of iron alloys. 2nd edition revised. Moscow: Metallurgiya, 1979. 232 p.
25. Jae Hoon Jang, In Gee Kim, Bhadeshia H. K. D. H. ε-carbide in Alloy Steels: First-principles Assessment. Scripta Materialia. 2010. Vol. 63. pp. 121–123.

Language of full-text русский
Полный текст статьи Получить
Назад