Название |
Processing and recycling of iron-bearing copper–nickel production waste |
Информация об авторе |
Tananaev Institute of Chemistry and Technology of Rare Elements and Minerals, Kola Science Center, Russian Academy of Sciences, Apatity, Russia:
A. G. Kasikov, Head of Laboratory, Candidate of Chemical Sciences, a.kasikov@ksc.ru E. A. Shchelokova, Researcher, Candidate of Engineering Sciences A. Yu. Sokolov, Research Engineer E. A. Mayorova, Engineer |
Реферат |
The importance of production waste recycling toward sustainable development of the society is defined. The world’s experience in processing and reusing of metallurgical waste from nonferrous metallurgy works are briefly described. Examples of the use of slag and cake in the construction industry are presented, and a number of technologies for the extraction of nonferrous metals and iron from them are described. To organize efficient utilization of waste slag from Kola MMC, a mixed processing method has been developed based on their sulfuric acid leaching with 5-10% sulfuric acid, transferring most of silica into the solution in the form of silicic acid and concentrating the bulk of nickel and all copper in an insoluble residue, followed by flotation of nonferrous metal sulfides, providing flotation concentrates containing more than 4.5% copper and nickel. Processing of the leaching solution produces mesoporous silica with a specific surface area of 700-800 m2/g, which is used as an active additive in cement. The possibility of hydrometallurgical processing of afterburning products after carbonyl nickel decomposition using hydrochloric acid solutions and liquid extraction method for separating nickel and iron by organic reagents to obtain pure solutions of ferric chloride is demonstrated. A scheme is proposed for the joint processing of solutions from leaching of ferruginous cakes and residues of carbonyl nickel afterburning, as well as nickel raffinates of cobalt production of Kola MMC, which ensures production of commercial ferric chloride. To reduce the volume of dumped iron cakes, the technology and regulation are developed for the extraction of iron(III) from concentrated nickel solutions using high molecular weight aliphatic ketones and their mixtures with fatty alcohols instead of its hydrolytic precipitation. The authors appreciate participation of Leading Researcher, Candidate of Geological and Mineralogical Sciences Yu. N. Neradovskiy and Researcher E. V. Chernousenko from the Tananaev Institute of Chemistry and Technology of Rare Elements and Minerals, Kola Science Center, Russian Academy of Sciences in these studies. |
Библиографический список |
1. Parbhakar-Fox A., Gilmour S., Fox N., Olin P. Geometallurgical Characterization of Non-Ferrous Historical Slag in Western Tasmania: Identifying Reprocessing Options. Minerals. 2019. Vol. 9, Iss. 7. 415. DOI: 10.3390/min9070415 2. Lag-Brotons A. J., Velenturf A. P. M., Crane R., Head I. M., Purnell P., Semple K. T. Resource Recovery From Waste. Frontiers in Environmental Science. 2020. Vol. 8. 35. DOI: 10.3389/fenvs.2020.00035 3. Sarfo P., Das A., Wyss G., Young C. Recovery of metal values from copper slag and reuse of residual secondary slag. Waste Management. 2017. Vol. 70. pp. 272–281. 4. The future of non-ferrous slag to 2029. Smithers. Available at: https://www.smithers.com/services/market-reports/materials/the-future-of-non-ferrous-slag-to-2029 (accessed: 19.04.2020). 5. Piatak N. M., Parsons M. B., Seal II R. R. Characteristics and environmental aspects of slag: A review. Applied Geochemistry. 2015. Vol. 57. pp. 236–266. 6. Potapov D. S., Svetlov A. V., Potapov S. S., Menshikov Yu. P., Nesterov D. P., Makarov D. V. Experimental modeling of weathering uneven slag copper-nickel production. Mineralogiya tekhnogeneza. 2013. No. 14. pp. 38–49. 7. Parshina M. V. Geochemical and ecological features of slag waste transformation in the acidification zone. Journal of Mining Institute. 2006. Vol. 167-1. pp. 90–93. 8. Zosin A. P., Priymak T. I., Koshkina L. B. Ecological factors in geochemical transformation of copper–nickel sulfide ore processing waste. Ekologicheskaya khimiya. 2003. Vol. 12, No. 1. pp. 34–42. 9. Katsiotis N. S., Tsakiridis P. E., Velissariou D., Katsiotis M. S., Alhassan S. M., Beazi M. Utilization of Ferronickel Slag as Additive in Portland Cement: A Hydration Leaching Study. Waste and Biomass Valorization. 2015. Vol. 6, Iss. 2. pp. 177–189. 10. Gurevich B. I., Tyukavkina V. V. Binders produced from nonferrous metallurgy waste. Tsvetnaya metallurgiya. 2007. No. 4. pp. 10–16. 11. Kalinkin A. M., Gurevich B. I., Kalinkina E. V., Tyukavkina V. V. Nonferrous metallurgy waste in the Arctic region for production of high-effective alkali slag binders and concretes. The North and the Arctic in the New Global Development Paradigm (Luzin’s Lectures–2018) : Proceedings of IX international scientific-practical conference. Apatity : Izdatelstvo FITs KNTs RAN, 2018. pp. 129–130. 12. Kalinkin A. M., Krzhizhanovskaya M. G., Gurevich B. I., Kalinkina E. V., Tyukavkina V. V. Hydration of mechanically activated blended cements studied by in situ X-ray diffraction. Inorganic Materials. 2015. Vol. 51, No. 8. pp. 828–833. 13. Antoninova N. Yu., Shubina L. A. The Use of Technogenic Waste for the Nature-oriented Purposes at the Mining-and-metallurgical Integrated Works. Ekologiya i promyshlennost Rossii. 2015. Vol. 19, No. 10. pp. 38–41. 14. Gorbacheva T. T., Ivanova L. A., Makarov D. V. Pechenganickel slag in solution of ecological problems. Trudy Fersmanovskoy nauchnoy sessii GI KNTs RAN. 2018. No. 15. pp. 429–432. 15. Zavarzina M. A. Iron-bearing cakes of nickel production in construction materials. Stroitelnye materialy. 1999. No. 1. p. 27. 16. Razinkova O. A., Malkanduev Yu. A., Marishev M. Kh., Slonov A. L. Ways of using falling off cakes of hedromettallurgy in the production of building material and articles. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitelnogo universiteta. Ser. Stroitelstvo i arkhitektuta. 2010. Vol. 19(38). pp. 64–68. 17. Svetlov A. V., Potapov S. S., Potapov D. S., Kravchenko E. A., Erokhin Yu. V. et al. Investigation of possibility of recovery nonferrous metals and producing building materials from copper-nickel smelterslag. Vestnik Murmanskogo gosudarstvennogo tekhnicheskogo universiteta. 2015. Vol. 18, No. 2. pp. 335–344. 18. Veselovskiy A. A. Nickel and cobalt recovery from aged and newly formed nickel dump slag. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2018. Vol. 22, No. 3(134). pp. 194–208. 19. Vesekha M. V., Putintsev N. M. Improvement of nonferrous metal recovery from copper–nickel production cakes. Izvestiya vuzov. Tsvetnaya metallurgiya. 2015. No. 1. pp. 15–18. 20. Dyakova L. V., Rtveladze V. V., Kosyakov A. I. Processing of slag post-leaching solutions. Hydrometallurgy and chemistry of rare elements : Collected papers. Apatity, 1991. pp. 50–52. 21. Kosyakov A. I., Rtveladze V. V., Sednev Yu. M. Economic efficiency of integrated chloride treatment of ironbearing cakes. Chemical technology of rare elements and minerals. Apatity : KNTs, 1986. pp. 28–30. 22. Kasikov A. G., Areshina N. S. Integrated processing and recycling of products and scrubbing rejects of in copper–nickel industry. Apatity : FITs KNTs RAN, 2019. 196 p. 23. Timoshchik O. A., Shchelokova E. A., Chernousenko E. V., Kasikov A. G. Mixed technology for integrate processing of slag at Pechenganickel Mining and Processing Plant. Vestnik Kolskogo nauchnogo tsentra RAN. 2019. No. 4(11). pp. 69–74. 24. Kasikov A. G., Sokolov A. Yu., Shchelokova E. A., Glukhovskaya I. V. Extraction of iron(III) from chloride nickel solutions with aliphatic ketones. Russian Journal of Applied Chemistry. 2019. Vol. 92, No. 8. pp. 1107–1112. 25. Chetverkin A. Yu., Khomchenko О. А., Vergizova T. V., Dubrovskiy V. L. Developing a process for processing the magnetic matte fraction at Kola MMC. Tsvetnye Metally. 2019. No. 11. pp. 34–39. DOI: 10.17580/tsm.2019.11.03 26. Tsapakh S. L., Malts I. E., Chetverkin A. Yu., Smirnov P. V. Removal of iron from high-chloride nickel solutions. Tsvetnye Metally. 2019. No. 11. pp. 61–69. DOI: 10.17580/tsm.2019.11.08 |