Журналы →  Obogashchenie Rud →  2020 →  №1 →  Назад

SECONDARY RAW MATERIAL PROCESSING
Название A study on the possibility of processing tungsten-containing mature tailings using a Pneuflot® flotation machine.
DOI 10.17580/or.2020.01.09
Автор Shepeta E. D., Lebedok A. V., Samatova L. A.
Информация об авторе

Mining Institute, Far Eastern Branch of RAS (Khabarovsk, Russia):

Shepeta E. D., Senior Researcher, Candidate of Engineering Sciences, elenashepeta56@mail.ru
Samatova L. A., Head of Laboratory, Candidate of Engineering Sciences

MBE Coal and Minerals Technology Ltd (Moscow, Russia):

Lebedok A. V., Director of Mineral Processing, lebedokart@mail.ru

Реферат

The article presents comparative test data for the processing of the mature tailings sand fraction for the tailings facility of the Primorskaya concentration plant using a Pneuflot® machine (type P-FV02 K) and a mechanical machine (by «Mekhanobr»). The characteristics of the initial test material are as follows: 23 % content of class –80+0 μm, WO3 of 0.073 %, Cu of 0.048 %, Au of 0.38 g/t, Ag of 1.1 g/t. The main ore and rock minerals are represented by scheelite, chalcopyrite, pyrrhotite, quartz, calcite, and pyroxene. Prior to flotation, the tailings were crushed to the particle size of 58 % class –80+0 μm. In the Pneuflot® machine, the following recovery rates were achieved: 9.5 % of copper in the sulfide concentrate and 69 % of scheelite in the concentrated crude product with the mass fraction of WO3 of 0.6 %. The flotation efficiency for scheelite grains with the particle size of –44+15 μm and –15+0 μm was 82–75 % of the class. During a comparative testing using a laboratory mechanical machine, a crude product with the mass fraction of WO3 of 0.62 % was obtained with the recovery rate of 52.5 %. There is a possibility of improving scheelite recovery up to 59.7 % through a reduction of losses with sulfides with the additional introduction of two sulfide cleaner flotation cycles into the process flow. The recovery of fine scheelite particles is respectively 77–49 % of the class, which is significantly lower (especially for the particle size class of –15+0 μm) as compared to the Pneuflot® machine. Using mechanical machines with the volumes of 3.0 and 0.5, sulfide concentrate with the mass fraction of Cu 0.83 % with 45 % recovery was isolated from the 0.2 l mature tailings sample.

Ключевые слова Pneuflot® pneumatic flotation machine, sand fraction, tungsten-containing mature tailings, scheelite, flotation, processing of technogenic deposits
Библиографический список

1. Kupka N., Rudolph M. Froth fotation of scheelite — A review. International Journal of Mining Science and Technology. 2018. Vol. 28. pp. 373–384.
2. Revnivtsev V. I., Rybakova Т. G., Leman Е. P. X-ray radiometric beneficiation of complex ores of non-ferrous and rare metals. Мoscow: Nedra, 1990. 120 p.
3. Kobzev А. S. Radiometric mineral processing. Мoscow: Gornaya Kniga, 2015. pp. 7–9.
4. Haslam A. D. Developments in the tungsten industry (Australia): Report. 21st ITIA Annual general meeting. Xiamen, China, 22–26 September 2008. 8 p.
5. Shepeta E. D., Samatova L. A., Alushkin I. V., Yushina T. I. Prospect of preliminary beneficiation use in the poor tungsten ores processing practice. Non-Ferrous Metals. 2016. No. 1. pp. 9–16. DOI: 10.17580/nfm.2016.01.02.
6. Eremin Yu. P., Denisov G. А., Shtern М. D. On the prospects of using the effects of vibration and acoustic vibrations on flotation processes. Obogashchenie Rud. 1981. No. 3. pp. 24–28.
7. Lebedev N. М., Voronin О. V., Lozhnikov S. S., Panteleev S. V., Baygunakova R. К., Mantsevich М. I., Khersonskiy М. I. The use of ultrasound to intensify beneficiation processes. Proc. of the V Congress of CIS countries mineral processing specialists, 23–25 March 2005. Vol. III. pp. 225–232.
8. Algebraistova N. K., Makshanin A. V. Agglomeration flocculation as a gold extraction method from anthropogenic deposits. Journal of Siberian Federal University. Engineering & Technologies. 2011. Vol. 4, Iss. 3. pp. 283–295.
9. Ignatkina V. A. Experimental investigation of сhange in the сontrast between flotation properties of calcic minerals. Journal of Mining Science. 2017. Vol. 53, No. 5. pp. 897–906. DOI: 10.1134/S1062739117052933.
10. Forss M., Broussaud A., Monredon T., Grebeneshnikov А. L., Luchkov A. M., Smirnov А. О., Kokorin N. V. The new generation of Metso Minerals flotation equipment — the basis for effective solutions. Gornaya Promyshlennost'. 2005. No. 6. pp. 42–46.
11. Lebedok A. V. Pneuflot® technology application for fine gold and borogypsum slime flotation. Obogashchenie Rud. 2018. No. 4. pp. 17–20. DOI: 10.17580/or.2018.04.04.
12. Shepeta E. D., Samatova L. A., Voronova O. V. Promising trends in development of technologies for tungstencontaining ore and waste processing. Gornyi Zhurnal. 2018. No. 10. pp. 67–71. DOI: 10.17580/gzh.2018.10.13.
13. Kohmuench J. N., Mankosa M. J. An update on the role of column flotation in the coal industry. CPSA Journal. 2006. Vol. 5, No. 1. pp. 19–26.
14. Kohmuench J. N, Mankosa M. J., Yan E. S. Evaluation of the stack cell technology for coal applications. XVI International coal preparation congress. Lexington (Kentucky, USA), 2010. pp. 374–381.
15. Kozlov V. А., Pikalov М. F. Existing flotation technology for coal sludge beneficiation. Ugol'. 2014. No. 2. pp. 65–69.
16. Markworth L., Jaspers W., Arkhipov А. Pneuflot — effective flotation technology. Gornaya Promyshlennost'. 2005. No. 6. pp. 20–22.
17. Markworth L., Chevga N. High and pneumatic flotation. Proc. of the XVIII International coal preparation congress. 2016. Vol. 2. pp. 1033–1038.
18. Li C., Gao Z. Effect of grinding media on the surface property and fotation behavior of scheelite particles. Powder Technology. 2017. Vol. 322. pp. 386–92.
19. Kupka N., Rudolph M. Chemistry of scheelite fotation: impact of pH modifer and interaction with depressants (Presentation). Mineral engineering conference. Wisla, Poland, 20–23 September 2017.
20. Compaňero R. J. A lab scale froth fotation study of tungsten-bearing tailings of the Barruecopardo mine (Spain) within the EU Horizon 2020 OptimOre Project: MSc Thesis. MVTAT. Freiberg, Germany. 2016.
21. Abramov А. А. Flotation beneficiation methods. 3 ed. Vol. 4. Мoscow: МGGU, 2008. 550 p.
22. Melik-Gaykazyan V. I., Emelyanova N. P., Glazunova Z. I. On the capillary mechanism for strengthening the particle-bubble contact during foam flotation. Obogashchenie Rud. 1976. No. 1. pp. 25–31.
23. Chernykh S. I. Creation of flotation machines of pneumatic type and the experience of their application in processing plants. Мoscow: TsNIIEItsvetmet, 1995. pp. 135–136.

Language of full-text русский
Полный текст статьи Получить
Назад